
Mobile Login Bridge: Subverting 2FA and
Passwordless Authentication via Android Debug

Bridge
Ahmed Tanvir Mahdad
Texas A&M University

College Station, TX, USA
mahdad@tamu.edu

Nitesh Saxena
Texas A&M University

College Station, TX, USA
nsaxena@tamu.edu

Abstract—Smartphones have become ubiquitous for a range of
social, financial, and personal endeavors, as well as for accessing
sensitive resources like confidential files from organizations.
Nevertheless, this extensive usage has also made smartphones
vulnerable to multiple security risks posed by malicious ad-
versaries who intend to breach user accounts or steal personal
information. Specifically, high-profile individuals or organizations
are susceptible to becoming targets of targeted attacks. Previous
research has identified various vulnerabilities that can compro-
mise smartphones and access users’ confidential information. A
prominent example of such a vulnerability, known as the “An-
droid Debug Bridge (ADB) vulnerability,” is widely recognized
as it enables an attacker to remotely access and manipulate an
Android smartphone and perform malicious activities. However,
the existing body of literature lacks a comprehensive examination
of the implications of this vulnerability on modern authentication
systems, web-based password managers, and financial and e-
commerce applications.

In this paper, we shed light on this area and evaluated
the security of multi-factor authentication systems, browser-
based password managers, and popular financial and e-commerce
applications. For this purpose, we introduce the BADAuth1 attack
that exploits a set of ADB utilities. Our results reveal the
susceptibility of secure authentication systems and browser-based
password managers to a sophisticated one-time attack on a non-
rooted device even with the latest Android version (Android
14.0). Furthermore, our research exposes the alarming ability
of adversaries to access all passwords stored by browser-based
password managers, thus paving the way for more severe attacks,
including large-scale breaches within organizational settings.
Additionally, our assessment underscores potential privacy and
security risks for financial and e-commerce apps under BADAuth
attacks, along with possible risk mitigation strategies.

I. INTRODUCTION

Smartphones have become an essential device for many
online activities, including social networking, banking, and
online transactions, as well as phone calls and text messages.
As a result, they have become lucrative targets for cybersecu-
rity breaches, due to the increasing use of mobile applications
for financial activities. Malware is the primary method of
conducting these attacks. Malware can infiltrate users’ devices
through various channels, including malicious applications,
email attachments, and browser extensions.

1Named after “Bridge Android Debug for malicious Authentication”

Charging Station

Computer

Stored passwords

2FA approvals

Sensitive Documents

Adversary

Smartphone

Fig. 1: Overview of BADAuth attack on Android smartphones.

Malware can infiltrate smartphones via USB connectivity,
in addition to the typical infection methods. In such instances,
attackers can take advantage of the Android Debug Bridge
(ADB), a tool that facilitates communication and control be-
tween a computer and a smartphone, to infect the smartphone
when the ’USB debugging’ mode is enabled. This mode
grants elevated permissions to the connected device, enabling
attackers to carry out malicious activities.

Researchers have pointed out the possible malicious use of
ADB and associated risks. For example, they leveraged the
elevated permissions gained from ADB Shell and demon-
strated event recording and injection, thus mimicking user
actions without active user involvement. Mohamed et al. [1]
and Gomez et al. [2] showed how adversaries can use record-
and-replay of touch events to record and then inject touch
events to mimic user actions. Researchers also reported private
data infiltration, including authentication credentials such as
passwords, using ADB commands like screenshot [3], [4], [5].
Additionally, Meng et al. [6] conducted app analysis on the
Google Play store to detect apps that still use ADB commands
in their workflow, posing a potential risk to app users.

In recent versions (Android 9.0 and 10.0), Android made
some permission changes [7] that restrict injecting touch event
data using ADB Shell. Furthermore, in recent versions,
third-party applications are no longer authorized to view the
contents of the ”/data/local/tmp” directory, primarily used for
running executables on the device. With these changes, record-



TABLE I: Attack Summary on 2FA and passwordless Schemes

Scheme Variant Attack
Approach

Successful
Attack

Security key Built-in Security Key Inside-adversary ✓

Remote-helper ✓1

Push Notification

Confirm Inside-adversary ✓
Remote-helper ✓

Compare-and-Confirm Inside-adversary ✓
Remote-helper ✓

Select-and-Confirm Inside-adversary ✓
Remote-helper ✓

One Time PIN
SMS-OTP Inside-adversary ✓

Remote-helper ✓
Software Token Inside-adversary ✓

Remote-helper ✓

✓- Successful, ✗- Not successful
1 Remote-Helper is unable to defeat the built-in security key protected by the titan-

m chip in Pixel phones, but it has been observed to be successful in exploiting
other phone models.

and-replay attacks reported in [1], [2] will no longer work and
pose a risk to users.

With the increasing prevalence of smartphones in daily
life, they are becoming a more popular factor in multi-
factor authentication. Modern authentication systems, such as
security keys and push notification authentication, increasingly
use smartphones as a possession factor. Although previous
research has identified the risk of information theft [3], [4],
[5], including passwords through screenshots and record-
and-replay event attacks, there has been no evaluation of
the security of modern authentication systems, browser-based
password managers, and popular smartphone financial apps
in the presence of the ADB vulnerability. Most importantly,
no research has evaluated the present state of the risk of the
ADB vulnerability in the latest Android version. Additionally,
no effective mitigation recommendations have been suggested
to prevent this attack.

To address this research gap, we design the attack frame-
work BADAuth, which utilizes a series of ADB commands to
generate touch events, button presses, and other events pro-
grammatically, eliminating the need for touch or button press
event injection. Unlike previous record-and-replay attacks [1],
[2], BADAuth is effective against the latest Android version
(Android 14.0). We conducted an assessment of the security
of modern authentication systems that utilize smartphones
as possession factors, as well as browser-based password
managers that sync password vaults with smartphone versions.
We identified vulnerabilities that can lead to compromises in
password vaults and authentication systems in the presence of
BADAuth. Finally, we propose effective mitigation techniques
that can safeguard against BADAuth and similar automated
agents. The overview of the attack is shown in Figure 1.
Our Contribution: Our contribution to this paper is four-fold:

1) Proposed alternative ADB-based attack framework,
BADAuth, distinct from record-and-replay attacks:
Our proposed attack framework, BADAuth, employs ADB
utilities to automate user actions on smartphones, in
contrast to the record-and-replay attack which depends
on touch event injection. This attack has the ability to
function efficiently on all versions of Android, including
the most recent one (Android 14.0).

2) Evaluation and Demonstration of BADAuth attack
on real-world 2FA and passwordless systems: We
evaluated the security of real-world 2FA systems in the
presence of BADAuth that impersonates user actions on
Android devices and demonstrated the results. We used
two approaches: inside-adversary (where both the attack
initialization and 2FA verifications were done in the same
device) and remote-helper (where the attack was initiated
outside of the device and verification was done from
the target smartphone) in the evaluation process. The
summary results are shown in Table I.

3) Unveiling the vulnerabilities of browser-based pass-
word managers: We have demonstrated the capability
of BADAuth to exploit vulnerabilities in popular browser-
based password managers, including Google Chrome.
With BADAuth, an external adversary can easily export
all stored passwords in clear text from browser-based
password managers. This poses a significant security
risk as it allows malicious entities to gain unauthorized
access to passwords that may not have been used on the
smartphone but are stored within the password manager.

4) Security Analysis and Countermeasures for Pop-
ular Android Apps with Sensitive Financial and
E-commerce Services: Considering the capability of
BADAuth that impersonates user actions on Android de-
vices, we analyzed ten popular and highly rated Android
apps that provide the sensitive financial services, such
as banking and credit card management. We identified
potential vulnerabilities in their workflow that can be
exploited by BADAuth and suggested effective mitigation
strategies that can prevent similar attacks.

The video demonstrations of the implemented attacks
on 2FA and passwordless systems are presented at
https://sites.google.com/view/badauth/home.

II. BACKGROUND

Two-factor Authentication (2FA) Systems: In 2FA systems,
in addition to the password, the user has to prove posses-
sion of a device known as a “possession-factor” device. To
successfully defeat the 2FA systems, the adversary has to
compromise both the user terminal (where the knowledge
factor is compromised) and the possession-factor device.

Security Key: The security keys utilize the FIDO2 protocol
for user presence verification [8]. They employ tamper-proof
secure hardware, such as lightweight key-like devices like
Yubikey, for secret key computation and storage. The integrity
of the secured chip is maintained, preventing tampering or
unauthorized access by the host OS or malicious programs.
Another approach, known as the “Built-in Security Key,”
utilizes the smartphone itself as a security key. The key is
computed and securely stored on the smartphone. Google Pixel
phones incorporate a dedicated tamper-proof chip known as
“Titan-m,” while other devices utilize an isolated area within
the phone’s processor for the same purpose.



Push Notification Authentication: It is another recent addi-
tion to 2FA systems. Here, in addition to the password, the
service sends a push notification to a pre-registered device
(e.g., smartphone). Users have to establish their presence by
tapping on the “Approve” button there. Recently, it has gained
popularity as the primary 2FA system for online services (e.g.,
Google [9]), password managers (e.g., LastPass [10]), and
organizational settings (e.g., Duo [11]).

One Time PIN (OTP): OTP can be generated in a smartphone
app (or any hardware token) or communicated via SMS (Short
Message Service). The user has to enter the OTP into the user
terminal to complete the authentication.

Passwordless Authentication Systems: In passwordless au-
thentication systems, they utilize possession factors (e.g.,
smartphones) as an alternative to passwords. Additionally,
smartphone-based passwordless systems require the phone
lock to approve a notification to authenticate.

Browser-based Password Managers: Password managers are
essential tools for managing and safeguarding complex pass-
words. Generally, password managers are built-in functionality
in the major browsers (e.g., Chrome, Firefox) that allow users
to enable “sync” to use saved passwords across all their
devices. Password managers can also be implemented by third-
party providers (e.g., LastPass, 1Password). In this work, the
primary focus is on the security of browser-based password
managers in the context of our designed attack framework.

III. THE RISK ASSOCIATED WITH ADB

A. Android Permission Model

The Android OS utilizes the “Application Sandbox” model,
which is derived from Linux-based operating systems, to
ensure the security of app resources. This model effectively
isolates app resources and restricts an app’s access to resources
that have not been explicitly allocated to it. This helps protect
other apps and the operating system from unauthorized or
malicious activities. Furthermore, the Android OS assigns
different permission levels to apps based on their specific
functionalities and requirements.

Install-time Permissions: During installation, an app is
granted install-time permissions. App developers are required
to declare necessary permissions, which are then automatically
granted during the installation process. These permissions are
categorized as “Normal Permissions,” which are considered
low-risk, and “Signature Permissions,” which are granted when
the signed certificate of the permission-seeking app matches
with a pre-defined app.

Runtime Permissions: Runtime permissions are categorized
as “Dangerous Permissions” as they grant an app access to
data and resources beyond its sandbox, allowing actions on
private user data. App developers are required to explicitly
declare these runtime permissions, and users will always see
a prompt to allow or deny such permissions.

B. How Malware Exploits ADB Permissions

Android Debug Bridge (ADB) consists of three compo-
nents. The first component is the ADB client, located on
the development machine, which is responsible for sending
commands. The second component is the ADB Daemon,
which runs as a background service on the device and executes
the received commands. Lastly, the ADB server manages the
communication between the client and the daemon.

The “ADB shell” and command-line ADB utilities grant ele-
vated permission levels, allowing unrestricted access to device
resources. This feature is intended to aid app developers during
development without requiring explicit runtime permissions.
While beneficial for developers, it can also be exploited by
malicious entities for nefarious purposes.

For example, the ADB utilities “screencap” and “screen-
record” can be used to capture screenshots or record the screen
without any sound or visual cues, unlike the default screenshot
utility of Android. This capability poses a risk as it enables
the recording of a user’s activities during sensitive operations
(e.g., logging into a bank account). Additionally, the ADB
utilities “input tap,” “input key event,” and “input text” can
inject touch events, button presses, and text input into text
boxes, respectively. This allows an attacker to automate user
actions, such as initiating authentication requests or approving
2FA prompts, without requiring any user involvement.

The ADB shell on an Android smartphone has full
read/write permission to the directory /data/local/tmp.
If the phone’s USB debugging is enabled and it is connected
to a malicious computer or port, an attacker could push an
executable service to this directory. The executable would
inherit the same elevated permissions as the ADB shell.

IV. ATTACK APPROACH AND DESIGN

A. Attacks, Adversary and their Motivation

1) Adversary Model: Our proposed adversary model en-
compasses two distinct types of adversaries. This model aims
to provide a comprehensive understanding of the potential
threats faced by organizations and individuals.

Adversary Type 1: These adversaries are motivated to infil-
trate the systems of large organizations and acquire valuable
and confidential data. They specifically target individuals
within these organizations holding key roles (e.g., developers,
systems admins), who are typically technical experts. The pri-
mary focus of these adversaries is to exploit vulnerabilities in
their targets’ smartphone browsers with the goal of obtaining
sensitive organizational passwords, thereby compromising the
organization’s security. We assume that the target user has
already logged into their browser profile and enabled password
synchronization. Additionally, we assume that the adversary is
already aware of the user’s phone PIN, which they can acquire
a smartphone PIN by employing well-known touch stroke
logging attacks, as described in [12], [13]. These automated
touch loggers can be utilized alongside BADAuth to record and
transmit the target users’ PIN to adversaries. We refer to the
attack involving adversary A as Attack A.



Mobile Device

/data/local/temp

Work Computer

Public USB Ports

1. Push 
BadAuth
Service 3. Gained elevated permission 

level same as ADB Shell

2. Start BadAuth Service

4. Run Scripts

Password Stealing 2FA compromise

Attack Entry Points

(a) Overview of the workflow for malicious program injection and activation
on an Android smartphone.

BadAuth

Notification Approval

Emulate Button Press

Personal Information

SMS Containing OTP

(b) An overview of malicious program capability on secure authentication
systems and private information stored on mobile devices.

Fig. 2: An overview of malicious program injection process and attack capability.

Adversary Type 2: This category of adversaries focuses
on advanced Android users who engage in activities such
as using custom Android ROMs, performing Android test-
ing, or serving as administrators for social networks used
by prominent figures such as politicians and actors. Their
primary objective is to gain unauthorized access to the personal
accounts of these high-profile individuals, which typically
employ advanced two-factor authentication (2FA) methods for
enhanced security. We denote this attack as Attack B.

2) Attack Entry Points: First, we assume that the target
users, being advanced users themselves, willingly enable the
“Developer Options” on their Android devices. This is moti-
vated by their interest in utilizing advanced tools to assess
the performance of their developed applications or custom
operating systems. These advanced users also include devel-
opers who use their smartphones on trusted work computers.
This common practice is also evidenced by discussions among
application developers in online forums [14]. They prefer real
smartphones over emulators for more precise user experience
evaluation [15]. Additionally, they typically test apps on mul-
tiple OS versions and devices [16]. These needs prompt them
to use their own phones, with USB debugging enabled, for
app testing. Since these workstations are trusted, they would
not encounter any USB debugging prompts. This workflow is
practical, given their daily work habits.

Additionally, adversaries possess the capability to persuade
target users to install seemingly benign Android applications,
which eventually prompt them to enable developer options
and USB debugging as a prerequisite for unlocking enhanced
functionality within these applications. It is important to note
that, the adversaries do not have physical access to the target
user’s workstation.

We consider two scenarios for BADAuth infections on target
devices, one for each type of adversary.

Scenario 1: We assume that adversaries are capable of per-
suading target users to install malicious program executables
on their trusted workstations. This can be achieved through
various deceptive means, such as convincing the target user
to install seemingly harmless software on their host computer,
such as a laptop, or enticing them to click on a malicious

link that initiates the download of these malicious files and
executables on their computer. In this particular scenario,
the targeted users willingly connect their smartphones to
their trusted workstations for working purposes (as discussed
before), unaware of the presence of BADAuth. Consequently,
the user does not encounter a prompt to allow USB debugging,
further facilitating the adversary’s purpose.
Scenario 2: In Scenario 2, we consider a situation where the
targeted users unknowingly connect their smartphones to a
malicious charging port located in a public setting, such as an
airport. These compromised charging ports can be connected
to a host computer under the control of adversaries, housing
malicious programs and executables. Given that the targeted
users are advanced Android users, we assume that they would
have already activated the developer mode and enabled USB
debugging on their devices.

Users are prompted to allow USB debugging when the host
computer is unfamiliar to the target smartphone. A previous
study [17] showed that only 17% of users pay attention to the
Android permission prompts. Most users grant permissions
quickly, exhibiting a skip-through behavior, to accomplish
their desired task as soon as possible. For example, the desired
task might be using a utility app while installing an applica-
tion, or making an important call or message while charging
the smartphone at the airport. Based on this observation, we
assume that the target users will accept the USB debugging
prompt without reviewing its contents carefully, and thus
expose their devices to potential attacks.

3) Practicality of the Adversary Model: In this section,
we assess the practicality of our assumptions in the adversary
model.
Learning username and passwords: For Attack A, we assume
that the attacker is not aware of the target user’s authentication
credentials, such as their username and password for any
service. On the other hand, for Attack B, we assume that
the attacker has knowledge of the target user’s username
(often a public email address) and password through one of
the following methods: a previous Attack A, common cyber-
attacks, or known password vulnerabilities (e.g., phishing,
keylogger, large-scale password leaks [18], [19], reuse of



leaked passwords on more sensitive sites). According to the
ForgeRock Consumer Identity Breach Report, two billion
records, including usernames and passwords, were stolen in
2021, representing a 35% increase compared to the previous
year [20]. Therefore, obtaining a targeted user’s username and
password is a realistic threat rather than a strong assumption
for adversaries.

Furthermore, this assumption aligns with previous works
(e.g., work of Jacomme et al. [21]), which commonly adopt
the attacker’s knowledge of the target user’s password for
analyzing the efficiency of the second factor (possession
factor) when the password is compromised.

Public USB charging port. USB charging ports, specifically
those commonly found in airports, are a potential attack
vector for cyberattacks on mobile devices. This security threat
has been extensively recognized and studied by researchers
(e.g., Tian et al. [22]). Several defense mechanisms have
been proposed by researchers and practitioners to prevent
or mitigate such attacks (e.g., [23]). Moreover, authoritative
organizations such as the US Federal Communications Com-
mission [24] and the US Federal Bureau of Investigation [25]
have acknowledged this practical and significant threat posed
by USB charging ports in today’s context.

USB Debugging: We assume that the target users of both
Attack A and Attack B are advanced Android users who
activated the developer option on their smartphones, either
for their own purposes or by following some instructions
from a malicious source. This assumption is supported by
a previous survey from the literature [26] that reported that
16.3% of users consistently have USB debugging turned on,
while 41.9% of them are unaware of the status of USB
debugging. As discussed in previous subsections, the adversary
can also persuade unsuspecting users to activate the Developer
option through any application installation guide and then
enable USB debugging.

B. Understanding the Attack Mechanism

In our analysis, we used three devices: OnePlus 3T running
Android 9.0, OnePlus 7T running Android 11.0, and Google
Pixel 5 running Android 14.0. To implement the attack mod-
ules, we utilized the Android Native Development Kit (NDK),
which allows the execution of C or C++ executable programs
within an Android device.

Leveraging ADB Utilities to Design the Attack: Adversaries
utilize standard ADB utilities such as Input Tap, Input
Swipe, and Input Keyevent to simulate touch and button
press events. Another utility, Input Text, is used for enter-
ing text in various textboxes, including password fields. It is
also helpful in navigating to a specific web page, performing
searches, and installing helper apps from Google Play. Addi-
tionally, adversaries can start and stop Android applications
(e.g., browser, messaging app, OCR app, text editor app) on
the smartphone during the attack workflow. For this purpose,
they make use of ADB utilities such as am and monkey.
To paste text copied to the clipboard, adversaries utilize the

TABLE II: Examples of ADB command chain to automate user actions
(Google Pixel 5)

Task Command Chain

Username and password
submission

am start -a android.intent.action.VIEW -d
http://twitter.com/login && sleep 2
input text username && sleep 1 && input
tap 239 724 && sleep 2 && input tap 239
724 && sleep 1 && input text password
&& sleep 1 && input tap 942 1449

Screenshot capture screencap -p /sdcard/example.png

Screen video recording screenrecord –time-limit 70
/sdcard/azure.mp4

Application launch
am start -n com.azure. authen-
ticator/com.azure.authenticator.ui.
MainActivity && sleep 2

Stop application am force-stop com.azure.authenticator

TABLE III: Adversary task, conditions, and permission

Adversary Task USB
Connectivity

Permission

BADAuth injection to
device

Required Required 1

Touch event Injection Not Required Automatically
Granted

Hidden Screenshot Not Required Automatically
Granted

Hidden Screenvideo Not Required Automatically
Granted

Automatically Granted - Uses ADB Shell Permission
1 Only required at first-time connection, which also users tend to

approve without checking [17]

keyevent 279 command. Furthermore, the sleep utility
is used to introduce necessary delays.

Generate Binary Executable: Adversaries leverage the An-
droid Native Development Kit (NDK) to compile attack pro-
grams into binary executables. These programs, coded in
C, enable adversaries to simulate user actions programmati-
cally, including generating screen tap events, emulating button
presses, launching and terminating applications, capturing
screenshots, and recording screen videos. The execution of
these actions is orchestrated through a sequence of ADB com-
mands linked together in a chain. Table II provides examples
of such ADB command chains. Additionally, the adversary
creates an additional shell script file (start.sh) to initiate the
program for the first time.
BADAuth Infection on Device: Adversaries place the exe-
cutable and shell script file in a designated directory (/data/
local/tmp) on an Android phone. Once the executable file
is initiated, it becomes independent of the USB connection,
allowing the script to execute malicious activities later without
relying on the USB connection. The executable will persist
until the device is restarted or the process is terminated. To
maintain screen activity, adversaries can dispatch random tap
events at regular intervals.

An overview of the injection of the malicious program and
its attack capabilities is presented in Figure 2. Additionally,
Table III outlines the adversary’s capabilities at various stages
of the attack workflow.



1. Authentication Initialization
from Phone

2. Request sent to 
service

3. Sent 2FA request 
From service

4. Request approval
From Phone

Inside-adversary Attack

1. Authentication initialization
from Remote device

2. Request 
sent to 
service

4. Request approval
From Phone

Remote-helper Attack

Remote Attacker

Service
Service

3. 2FA request from
service

Fig. 3: Workflow of Inside-adversary and Remote-helper Attack

C. Attack Workflow

As mentioned previously, the adversary can initiate two
types of attacks, referred to as Attack A and Attack B. Attack A
specifically targets browser-based password managers, while
Attack B constitutes a broader attack on secure 2FA and
passwordless systems in general.

1) Attack A: The primary objective of this attack is to steal
passwords stored across multiple devices within the same user
profile of browsers. The attacker seeks to export all saved
passwords or target specific ones, including organizational
passwords, and transmit them to a remote adversary. We
present a general workflow for the process of password theft
from mobile browser apps. As a representative example, the
steps of an attack on the Google Chrome password manager
are discussed here:

Step 1: BADAuth starts the Google Chrome browser and
navigates to https://passwords.google.com.

Step 2: It generates tap events to open settings and taps on
”Export Passwords”.

Step 3: In the next step, a verification prompt will appear
that asks for the password. BADAuth inserts text with already
known passwords in that field and submits it.

Step 4: All passwords are downloaded as a (.csv) file in the
Downloads folder.

Step 5: BADAuth navigates to https://mail.google.com, types
a new email, attaches the exported passwords, and sends them
to an external adversary.

Step 6: BADAuth deletes the sent email from the ”Sent”
folder of the email and deletes the downloaded file from the
Downloads folder to remove attack traces.

BADAuth can steal all passwords saved across various de-
vices, including those used for work, within a specific profile,
and transmit them to external adversaries. This capability
poses a significant risk of a large-scale organizational breach,
as the attacker may exploit it as a gateway to infiltrate a secure
network. An example of exported authentication credentials is
illustrated in Figure 4.

2) Attack B: To implement Attack B, the BADAuth employs
two approaches: the inside-adversary attack and the remote-
helper attack. An overview of these approaches is depicted in
Figure 3.

Inside-adversary attack on Security Key:
Step 1: The executable program initiates the attack when it
detects no user activity for a specific period of time (e.g., 30
minutes).
Step 2: Next, the executable program sends an authentication
request using previously collected credentials.
Step 3: The Android built-in security key system does not
necessitate user presence verification through a button press
or push notification when the authentication request originates
from the same device. Instead, users are required to verify their
phone lock (e.g., fingerprint) to approve the request. In the case
of fingerprints, a fallback option, ”Use PIN,” is displayed on
the screen. This can be exploited by BADAuth, enabling it
to programmatically input the user’s known PIN, authenticate,
and thereby bypass the security provided by Android’s built-in
security key.

Titan-m chip introduced some extra security features (e.g.,
acts as a secure boot controller, checks the digital signature
of boot image) to safeguard the user from malicious OS
[27]. However, using the inside-adversary attack, the BADAuth
can bypass the security added by the “Titan-m” chip in
Google Pixel phones. We have shown an example of an
inside-adversary attack on phones with Titan-m chip in our
demonstration.
Inside-adversary attack on Push Notification Authentica-
tion:
Step 1: BADAuth would send an authentication attempt to
the service. Anticipating the push notification to arrive a few
seconds after the authentication attempt, BADAuth activates
itself accordingly.
Step 2: When the push notification with the approve or deny
button appears on the phone’s screen or in the notifications,
BADAuth injects a tap event at a specific coordinate to approve
the notification without requiring active user involvement.
Step 3: In the select-and-confirm variant, BADAuth captures
a screenshot of the challenge, which includes all buttons with
numbers and the actual identifier. It then analyzes the screen-
shot using a third-party OCR app and the built-in analyzer in
the BADAuth service, generating a tap event for the correct
button to approve it. A sample attack on this variant is shown
in the demonstration.
Inside-adversary attack on SMS-OTP: Here, BADAuth can
collect OTP by exploiting the ”tap-to-copy” feature in SMS
notifications. This vulnerability was initially addressed by Lei
et al. [28], and we incorporate this concept into our design,
demonstrating an attack on SMS-OTP. The detailed steps are
described below.
Step 1: After an authentication attempt, the SMS containing
the OTP is usually received on the phone within a few seconds.
The Android OS extracts the OTP from the SMS and displays
it in the notification with a tap-to-copy button. BADAuth
activates itself shortly after the authentication attempt and
injects a tap event in the notification to copy the OTP to the
clipboard.



TABLE IV: Security of Browser-based password managers - Observation from Attack A

Browser Name Access Password Vault Security During Action in Password Vault
Password

Re-
quired?

2FA
required?

Phone
Lock

required?

All Password
export in
plaintext?

Display Single
Password in

plaintext?

Copy password in
plaintext?

Google Chrome ✗ ✗ ✓ phone lock phone Lock No Security
Microsoft Edge ✗ ✗ ✓ N/A phone lock No Security
Mozilla Firefox ✗ ✗ ✓ N/A phone lock No Security

Opera ✗ ✗ ✓ N/A phone lock No Security

✓– Yes, ✗- No

Step 2: In the next step, BADAuth pastes the OTP using
another ADB utility (keyevent 279) into the designated
text field on the authentication form and submits it to complete
the authentication.
Inside-adversary attack on Software Token OTP: In soft-
ware token, OTPs are generated on the phone through a
specific generator app (e.g., Google Authenticator). These
authenticator apps employ the FLAG_SECURE flag, prevent-
ing users or any automated agent from taking screenshots or
recording screen videos. To circumvent this security measure,
BADAuth utilizes ADB utilities (e.g., “am”) to initially launch
the software token app and then copy specific OTPs using the
”tap-to-copy” feature. This attack is shown in our demonstra-
tion, and the detailed steps are as follows:
Step 1: After sending the authentication request to the authen-
tication service, BADAuth would open the targeted software
token app (e.g., Google Authenticator) and exploit the tap-to-
copy feature to copy the desired OTP.
Step 2: In the next step, BADAuth would paste the OTP
(using keyevent 279) in the specific text field on the
authentication form and inject a tap event to submit it and
complete the authentication.
Remote-helper attack on Security Key: The Android built-
in security key on Google phones (e.g., Pixel series phones
starting from Pixel 3) requires a volume-down button press
to confirm the user’s presence. This physical volume-down
button is directly linked to the Titan-m chip within Google
Pixel phones. Consequently, attempting to emulate a button
press using ADB utilities cannot transmit the response to
the Titan-m chip, resulting in the failure of user possession
establishment. Thus, the remote-helper attack on the security
key is unable to compromise the security provided by the
Titan-m chip.
Remote-helper attack on Push Notification Authentication:
Step 1: BADAuth injects a tap event on a specific position of
the “Approve” button in the notification.
Step 2: For the select-and-confirm variant, the remote adver-
sary would send the unique identifier to BADAuth, which it
uses to generate a tap event on the correct button after the
analysis.
Remote-helper attack on OTP: A remote attacker can in-
struct BADAuth to capture a screenshot of the OTP or tap
on the tap-to-copy button (applicable to both SMS-OTP and
software token). In the subsequent step, the attacker can
communicate the extracted OTP or screenshot, which can then
be used to carry out the malicious authentication attempt.

Fig. 4: Screenshot of CSV file exported from Chrome Password Manager

After accomplishing its attack objectives, BADAuth can
eliminate all traces of the attack, including closing any apps
opened for the attack and uninstalling helper apps.

V. EVALUATION

A. Attack on Browser-based Password Managers

We investigate the security of mobile browsers utilizing
cross-device password synchronization, facilitating users in
accessing saved passwords across various devices. Our focus
is on the potential threat posed by BADAuth capable of
compromising password storage on mobile devices. We assess
the security measures implemented by different browsers,
including password re-verification, 2FA, and screen locks,
aimed at preventing unauthorized access to the password vault.
The summarized findings are presented in Table IV. Notably,
we observe that none of the browsers necessitate password or
2FA re-authentication once the user is logged into the browser
profile, but they do enforce a screen lock as a precaution to
reveal saved passwords.

We identify a vulnerability in Google Chrome that allows
an adversary to export all the user’s saved passwords in plain
text without any password re-verification. The only security
measure required is a screen lock, which can be bypassed by
BADAuth using downgrade attacks. The adversary can then
transmit it to the external adversary.

In other browsers, BADAuth can utilize the tap-to-copy
feature to capture desired stored passwords, subsequently
saving and transmitting them to the remote adversary. We
observed similar screen lock downgrading vulnerabilities in
other browsers as well, which BADAuth can exploit to fulfill
its objectives.

Based on these observations, it is evident that BADAuth
can steal passwords from browser-based password managers’
vaults.

B. Attack on 2FA Systems

Attack on Security Key: Among the security key variants,
our specific focus is on the built-in security key that involves
smartphones in its workflow. Typically, BADAuth can inject



TABLE V: Evaluation with Free Android Anti-malware Programs

Anti-malware Program File
Scan

Real
Time

Protection

Malicious
File

Warning

USB De-
bugging
Warning

Avast mobile ✗ ✗ ✗ ✓
Kaspersky Free Internet for

mobile
✗ N/A ✗ ✗

Lookout Mobile Security ✗ ✗ ✗ ✓
BullGuard Mobile Security ✗ ✗ ✗ ✗

Panda Dome Mobile
Antivirus

✗ ✗ ✗ ✓

Sophos Intercept X ✗ ✗ ✗ ✓
AVG mobile ✗ ✗ ✗ ✓

Bitdefender free antivirus ✗ N/A ✗ ✗

✓– Detected, ✗- Not Detected

touch events to automatically approve user presence. How-
ever, our observations reveal that the Titan-m chip in Pixel
smartphones prevents BADAuth from bypassing user presence
verification. Here, to establish user presence, the user must
physically press the ’Volume-down’ button, which is directly
connected to the chip, making it impossible for BADAuth to
emulate by injecting a button press event.

However, in the case of an inside-adversary attack, where
the authentication attempt is initiated from the same device,
the security key does not require a volume-down button
press. Instead, it only requires the establishment of a screen
lock, easily achievable by BADAuth using a downgrading
attack. Consequently, the security provided by Titan-m can
be bypassed by BADAuth in such cases.

Attack on Push Notification Authentication: We examine
the security of all push notification authentication variants.
Generally, BADAuth can inject touch events to approve push
notifications for both the confirm and compare-and-confirm
variants. In the select-and-confirm variant, BADAuth possesses
the capability to solve the challenge by taking a screenshot,
analyzing it, and tapping the correct button. We demonstrated
all these attacks in our demonstrations.

Attack on One-Time PIN (OTP): We demonstrate that
BADAuth can overcome all variants of OTP authentication. It
can copy the OTP from the notification or the messaging app
and paste it into the OTP entry field or send it to the remote
attacker. Additionally, it can access software tokens and copy
the OTP from them. All these attacks are showcased in our
demonstrations.

We present our attack summary in Table I.

C. Detectability

Anti-malware Programs: Anti-malware programs detect un-
wanted and harmful programs on devices by comparing known
signatures, suspicious permissions, and activities. They display
warnings about any suspicious apps and processes. We tested
BADAuth against popular anti-malware apps for Android. We
used Avast Mobile [39], Kaspersky Mobile Internet [40],
Lookout Mobile Security [41], Avira Mobile Antivirus [42],
BullGuard Mobile Security [43], Panda Dome Mobile An-
tivirus [44], Sophos Intercept X [45], AVG Mobile Antivirus
[46], and Bitdefender Mobile Antivirus (Free Version) [47].
These anti-malware programs provide both file scanning and

real-time protection (except Kaspersky and Bitdefender). How-
ever, none of them detected or warned about BADAuth during
its operation. Some apps warned about USB debugging being
enabled. Table V summarizes our observations.

Impact on Device Resources: Consuming a high amount of
resources can trigger warnings from anti-malware programs
against any process. To assess this, we measured the resource
consumption of BADAuth in both idle and active states and
observed that it utilizes a minimal amount of device and
network resources. This should not trigger alarms in anti-
malware programs. Detailed information about resource usage
is provided in Table VII, indicating minimal CPU and memory
consumption (nearly 0.01% of total available resources). The
virtual image (amount of virtual memory used by the process),
resident size (non-swapped physical memory used by the
process), and shared memory size usage are also minimal, both
in idle and peak states (when BADAuth injects touch events or
takes a screenshot).

D. Application Analysis

To assess the threat posed by BADAuth, we conducted an
analysis of its impact on real-world finance and e-commerce
smartphone applications. We selected ten popular apps from
the Google Play Store with over 10 million downloads and
high user ratings. Our evaluation focused on their privacy
protection mechanisms, authentication methods, and payment
procedures, aiming to determine whether these apps can effec-
tively maintain privacy and ensure user presence during sen-
sitive operations in the presence of automated agents similar
to BADAuth.

Privacy restriction. To mitigate the risk of silent screenshots
from BADAuth or similar automated agents, financial apps
should utilize the FLAG_SECURE to prevent screenshots.
However, our analysis (see Table VI) revealed that none
of the financial, e-commerce, and wallet apps we examined
implemented restrictions on screenshots and screen video
capturing. Consequently, BADAuth can effortlessly capture
screenshots of account information, statements, recent order
details, and transaction details from the background without
notifying users.

Authentication.: One of the benefits of persistent user authen-
tication is that it enhances the user experience for online shop-
ping and social networking platforms. However, applications
that involve sensitive financial transactions, such as banking
services, typically enforce a short authentication session dura-
tion for security purposes. As shown in Table VI, the majority
of the financial applications examined in this study require
user authentication every time the application is launched.
The primary authentication method for all applications is a
username/password combination, but biometric authentication
is also available as an alternative option. However, passwords
are still required as a fallback mechanism in case biometric
authentication fails.

According to the threat model presented in this paper,
passwords cannot provide adequate security in the presence



TABLE VI: Risk analysis of popular finance, e-commerce and wallet application in the presence of BADAuth

Privacy Restriction Authentication Payment / Fund Transfer

App
Category

App Name Screenshot Screen
Record

Authentication
Required?

Username/
Password

Screen
lock

Screen lock
downgrading

option

Verification
method

Screen
lock?

Finance

Wells Fargo [29] ✗ ✗ ✓ ✓ ✓ Password OTP ✗

Paypal [30] ✗ ✗ ✓ ✓ ✓ Password Captcha ✗

Discover [31] ✗ ✗ ✓ ✓ ✓ Password OTP ✗

Remitly [32] ✗ ✗ ✗ ✗ ✗ N/A ✗ ✗

Worldremit [33] ✗ ✗ ✓ ✓ ✓ PIN CVV ✗

E-commerce Amazon [34] ✗ ✗ ✗ ✗ ✗ N/A CVV ✗

E-bay [35] ✗ ✗ ✗ ✗ ✗ N/A CVV ✗

Wallet
Trust Wallet [36] ✗ ✗ ✓ ✗ ✓ Custom PIN Other 2 ✗

Coinbase [37] ✗ ✗ ✗ ✗ ✗ N/A Other 2 ✗

MetaMask [38] ✗ ✗ ✓ ✗ ✓ ✗ Other 2 ✗

✓- Feature is present, ✗- Feature not present.
2 These apps use third-party services for their transaction and payment. They have different payment and verification methods.

TABLE VII: Device resource consumption of the malicious program

Metric Consumption
(idle)

Consumption
(peak)

CPU Percentage 0.01% 0.01%
Memory Percentage 0.01% 0.01%

Virtual Image 4.4 M 9.1 M
Resident Size 1.1 MB 1.4 MB

Shared Memory 880 Kb 1 MB

of malware. Biometric authentication may be a more secure
alternative in such a scenario. However, if passwords or
PINs are used as a fallback option, they can be exploited
by BADAuth to circumvent biometric authentication security.
One of the applications examined in this study (worldremit)
employs a custom PIN (which may differ from the device PIN)
as an alternative option, which may increase the difficulty for
the attacker, but not eliminate the threat entirely.

Some of the financial and wallet applications do not man-
date authentication every time (as shown in Table VI), which
exposes them to the risk of severe financial losses and privacy
breaches by BADAuth.

In comparison to financial applications, the majority of the
wallet applications necessitate user authentication. However,
they predominantly employ biometric authentication rather
than username/password, which offers more security in light of
BADAuth’s capabilities. Furthermore, their biometric fallback
option is more secure, as Trust wallet demands a custom PIN
to override the biometric authentication. Metamask does not
have any fallback option whatsoever, which can effectively
thwart the BADAuth attack.

Payment / Fund Transfer: In addition to user authentica-
tion for accessing the application, financial applications also
implement an extra level of verification for payment or fund
transfer, which entails OTP or captcha. However, according

to our threat model and analysis, all variants of OTP are
vulnerable to BADAuth. Here, Advanced captcha, such as
image recognition, puzzles, or checkboxes, can help to prevent
this attack effectively.

Our observations on payment and fund transfer on examined
apps security in the presence of BADAuth are listed in Table
VI. The payment that involves a credit card requires Card
Verification Value (CVV), which is a standard practice. This
analysis reveals that very few of these applications, such as
PayPal and Metamask, employ secure methods of authen-
tication and payment, such as a captcha and a biometric
with no downgrade method, that can prevent an automated
attack agent, such as BADAuth. Applications that use custom
PIN, such as worldRemit and Trust wallet, can pose an extra
challenge for the attacker. Other applications, which did not
employ these secure methods, are susceptible to BADAuth.

VI. RELATED WORK

Mohamed et al. [1] demonstrated ADB vulnerabilities in
their work “SMASheD”, which exploited ADB permissions to
manipulate sensor data. They presented attacks on continuous
authentication and device locks, such as pattern and PIN.
However, Android 10.0 revoked the ADB shell permission to
inject sensor events, making these attack scenarios ineffective
on recent Android versions. In contrast, the BADAuth attack
uses ADB utilities to design a different approach that can com-
promise modern 2FA and passwordless systems, potentially
stealing private data, even on Android 14.0.

Lin et al. [5] discussed ADB vulnerabilities and demon-
strated the collection of private information, such as contact
lists, through screenshots. Another work, ScreenStealer [4],
focused on using ADB utilities to steal private information,
similar to [5]. Lin et al. also highlighted the malicious



use of the “screencap” utility and conducted an analysis of
Google Play apps to identify potential malicious use of ADB
vulnerabilities. Another work [6] analyzed screenshot apps,
similar to [5]. In contrast, our work focuses on highlighting
the risks associated with 2FA systems involving smartphones
and analyzing some popular sensitive apps security in presence
of BADAuth.

Hwang et al. [3] explored ADB vulnerabilities and the leak-
age of private information, with a focus on stealing messages,
call information, and SIM information. In contrast, our work
focuses on compromising secure 2FA systems. To steal OTPs
during the attack, we utilized the tap-to-copy feature and the
“dumpsys” utility, which is more effective for attacks on 2FA
systems compared to the method presented in this work.

Gomez et al. [2] leveraged ADB vulnerabilities in their
work ”RERAN” to demonstrate record-and-replay in benign
application automation processes. However, similar to the
approach used in [1], this method is no longer effective in
the latest versions of Android. In contrast, the BADAuth uses
ADB utilities to inject touch and button press events instead
of recording sensor data, which is effective even in the latest
Android version.

Shrestha et al. [48] proposed a preventive measure against
record-and-replay attacks by introducing noisy sensor data.
This makes it challenging for attackers to use recorded user
input to initiate an attack, similar to the approaches used in
“SMASheD” [1] and “RERAN” [2]. However, as our approach
does not rely on record-and-replay sensor data, this solution
is not effective in defending against our attack.

VII. DISCUSSION AND FUTURE WORK

Mitigation Strategies: An effective mitigation strategy, for
browser-based password managers, given the assumed threat
model of credential leakage, involves implementing a secure
screen lock, such as a fingerprint, which an automated agent
cannot easily bypass. In cases where fingerprint or face ID
fails due to device issues, these browsers could employ ad-
vanced CAPTCHA, which includes challenges, such as image
recognition tasks, puzzles, or checkboxes, that are difficult
for an automated agent to breach. This practice, common
in financial apps, can potentially enhance the protection of
sensitive password vaults by preventing malware attacks, even
if credentials are exposed. While this might affect usability
slightly, it is essential for the security of such scenarios.

In the case of 2FA and passwordless authentication methods,
ensuring user presence is an important security step. This can
be achieved through biometric verification, such as finger-
print and face ID, without downgrading option, which can
effectively prevent automated touch event and button press
generator attacks, including BADAuth. Additionally, secure
chip implementations, such as titan-m, provide another secure
means to establish the user presence.

Moreover, it is strongly advised that developers of push
notification authentication applications mandate users to tap on
the notification and open the application to complete approval
process. This action would help to display the unique identifier

and buttons within the application interface. This approach
provides an opportunity to implement the FLAG_SECURE flag
in their application, thereby preventing unauthorized screen-
shots and subsequently thwarting runtime button position
analysis conducted by BADAuth.

In addition, it is recommended to deactivate the automatic
copy-to-clipboard feature when an SMS containing a One-
Time Password (OTP) is received. While this feature may
enhance usability, it compromises security by potentially fa-
cilitating BADAuth to effortlessly capture the OTP. Therefore,
despite the slight inconvenience it may cause, disabling this
feature is a necessary trade-off for enhanced security.

It is recommended that users exercise caution when utilizing
public USB charging ports in communal spaces, and instead,
consider safer alternatives such as personal wall adapters or
power banks. Furthermore, it would be beneficial for Android
to incorporate built-in anti-malware programs into its system.
These programs would actively monitor all processes and
automatically terminate any process exhibiting a definitive
signature (e.g., using ADB commands) or abnormal behavior
(e.g., generating an excessive number of touch events, running
apps, taking screenshots). This proactive approach would
enhance the security of Android devices, providing users with
a safer and more secure user experience.

Limitation: The process that executes BADAuth cannot
restart itself once terminated by a user or a restart event.
Consequently, the attacker has to complete the attack before
the next restart. However, this limitation does not significantly
restrict attackers, as most users do not frequently restart
their smartphones, providing the BADAuth ample time to
accomplish its task before the device is restarted. A recent
user survey conducted by an online forum [49] indicates that
83% of users do not restart their phones daily, underscoring
this tendency.

Moreover, the attack can be mitigated by establishing
user presence through biometric verification methods such
as fingerprint and face ID. Additionally, the attack cannot
bypass the security provided by the titan-m chip in Google
Pixel phones. However, we have demonstrated that the attack
can be successful in real-life authentication systems using a
downgrading attack (e.g., using a PIN instead of biometric)
to bypass the security provided by both biometric verification
and the titan-m chip.

Future Directions: Researchers can investigate potential
loopholes in Android permissions that adversaries could ex-
ploit. Additionally, they could focus on designing a secure
password manager migration process, thereby eliminating the
need for the present export-import approach of password
migration in plaintext. Furthermore, the development of anti-
malware programs capable of effectively detecting and ter-
minating threats posed by similar programs to BADAuth is
another promising area of research.

Vulnerability Disclosure: We have reported the vulnera-
bility through the Google Bug Hunters program (Issue ID:
352938791).



VIII. CONCLUSION

We examined the well-known ADB vulnerability and its
potential to breach browser-based password managers, mod-
ern 2FA, and passwordless authentication systems. We also
showed that it can capture hidden screenshots and screen
videos to steal credentials and other sensitive data. This
flaw threatens sensitive user accounts, such as banking apps
and password managers. Our findings highlight the need for
vigilance and appropriate safeguards against such attacks.

ACKNOWLEDGMENTS

This work is funded in part by NSF grants: OAC-2139358,
CNS-2201465 and CNS-2154507.

REFERENCES

[1] M. Mohamed, B. Shrestha, and N. Saxena, “Smashed: Sniffing and
manipulating android sensor data for offensive purposes,” IEEE Transac-
tions on Information Forensics and Security, vol. 12, no. 4, pp. 901–913,
2016.

[2] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and
touch-sensitive record and replay for android,” in 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2013, pp.
72–81.

[3] S. Hwang, S. Lee, Y. Kim, and S. Ryu, “Bittersweet adb: Attacks and
defenses,” in Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, 2015, pp. 579–584.

[4] S. M. Muzammal and M. A. Shah, “Screenstealer: addressing screenshot
attacks on android devices,” in 2016 22nd International Conference on
Automation and Computing (ICAC). IEEE, 2016, pp. 336–341.

[5] C.-C. Lin, H. Li, X.-y. Zhou, and X. Wang, “Screenmilker: How to milk
your android screen for secrets.” in NDSS, 2014.

[6] M. H. Meng, G. Bai, J. K. Liu, X. Luo, and Y. Wang, “Analyzing use
of high privileges on android: an empirical case study of screenshot
and screen recording applications,” in International Conference on
Information Security and Cryptology. Springer, 2018, pp. 349–369.

[7] Android Developers, “Behaviour changes: All apps,” April 2022,
https://developer.android.com/about/versions/pie/android-9.0-changes-
all.

[8] FIDO Alliance , “Fido2: Webauthn & ctap,” 2022,
https://fidoalliance.org/fido2/.

[9] Google . (2022) Sign in faster with 2-step verification phone prompt.
https://bit.ly/2X3DyKL.

[10] Logmeln Inc. (2012) Lastpass - password manager & vault app.
https://www.lastpass.com/.

[11] Duo. (2012) Duo two factor authentication and endpoint security.
https://duo.com.

[12] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proceedings of
the fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks, 2012, pp. 113–124.

[13] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory: password
inference using accelerometers on smartphones,” in proceedings of the
twelfth workshop on mobile computing systems & applications, 2012,
pp. 1–6.

[14] r/FlutterDev, “Do you use your own phone to test?” October 2022,
https://www.reddit.com/r/FlutterDev/comments/ymaidj/do you use your to/ .

[15] Praveena Monohar, “Emulator vs simulator vs real device testing: Key
differences,” March 2022, https://www.lambdatest.com/blog/emulator-
vs-simulator-vs-real-device/.

[16] Sourojit Das, “What is android testing: Types, tools, and best
practices,” April 2023, https://www.browserstack.com/guide/what-is-
android-testing.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the eighth symposium on usable privacy and security,
2012, pp. 1–14.

[18] Cybernews – Latest Cybersecurity and Tech News, “Rockyou2021:
largest password compilation of all time leaked online with 8.4 bil-
lion entries,” July 2022, https://cybernews.com/security/rockyou2021-
alltime-largest-password-compilation-leaked/.

[19] ——, “Comb: largest breach of all time leaked online with 3.2 billion
records,” July 2022, https://cybernews.com/news/largest-compilation-of-
emails-and-passwords-leaked-free/.

[20] ForgeRock, “2022 forgerock consumer identity breach report,” August
2022, https://www.forgerock.com/resources/2022-consumer-identity-
breach-report.

[21] C. Jacomme and S. Kremer, “An extensive formal analysis of multi-
factor authentication protocols,” ACM Transactions on Privacy and
Security (TOPS), vol. 24, no. 2, pp. 1–34, 2021.

[22] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules, P. Traynor,
H. Vijayakumar, L. Harrison, A. Rahmati, M. Grace et al., “Attention
spanned: Comprehensive vulnerability analysis of {AT} commands
within the android ecosystem,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 273–290.

[23] Mobile Hacker, “Nethunter hacker vi: Ultimate guide to hid attacks
using rubber ducky scripts and bad usb mitm attack,” August
2023, https://www.mobile-hacker.com/2023/08/08/nethunter-hacker-vi-
ultimate-guide-to-hid-attacks-using-rubber-ducky-scripts-and-bad-usb-
mitm-attack/.

[24] Federal Communications Commission, “’juice jacking’: The dangers of
public usb charging stations,” October 2021, https://www.fcc.gov/juice-
jacking-dangers-public-usb-charging-stations.

[25] Bruce Schneier, “Fbi advising people to avoid public charging sta-
tions,” April 2023, https://www.schneier.com/blog/archives/2023/04/fbi-
advising-people-to-avoid-public-charging-stations.html?

[26] B. Watson and J. Zheng, “On the user awareness of mobile security
recommendations,” in Proceedings of the SouthEast Conference, 2017,
pp. 120–127.

[27] Jerry Hildenbrand, “What is the titan security module,” January 2020,
https://www.androidcentral.com/what-titan-security-module.

[28] Z. Lei, Y. Nan, Y. Fratantonio, and A. Bianchi, “On the insecurity of sms
one-time password messages against local attackers in modern mobile
devices,” in Proceedings of the 2021 Network and Distributed System
Security (NDSS) Symposium, 2021.

[29] Wells Fargo, “The wells fargo mobile app,” November 2023,
https://www.wellsfargo.com/mobile-online-banking/apps/.

[30] Paypal Pte. Ltd., “Paypal app: Send and manage your money,” November
2023, https://www.paypal.com/ao/webapps/mpp/mobile-apps.

[31] Discover Financial Services, “Disvcover mobile,” November 2023,
https://play.google.com/store/apps/details?id=com.discoverfinancial.mobile.

[32] Remitly Inc., “Remitly: Send and recieve money,” November 2023,
https://www.remitly.com.

[33] WorldRemit Corp., “Money transfer app: Worldremit,” November 2023,
https://www.worldremit.com.

[34] Amazon.com, Inc. Amazon.com: Online shopping for electronics,
apparels, computer, books & dvd and more. [Online]. Available:
https://www.amazon.com

[35] eBay Inc., “Life is easier in the ebay app,” November 2023,
https://pages.ebay.com/mobile-app/.

[36] trustwallet.com, “Best cryptowallet app for web2,nft, and defi,” Novem-
ber 2023, https://trustwallet.com.

[37] Coinbase, “Download coinbase wallet,” November 2023,
https://www.coinbase.com/wallet/downloads.

[38] Metamask- A consensys formation, “Download metamask: Blockchain
mobile app,” November 2023, https://metamask.io/download/.

[39] Avast Software s.r.o. (2022) Free android antivirus app – avast mobile
security. https://www.avast.com/en-us/free-mobile-security.

[40] Kaspersky Lab. (2022) Kaspersky internet security for android.
https://usa.kaspersky.com/android-security-free.

[41] Lookout, Inc. (2022) Lookout personal for android.
https://www.lookout.com/products/personal/android.

[42] Avira Operations GmbH & Co. KG. (2022) Avira antivirus security for
android. https://www.avira.com/en/free-antivirus-android.

[43] BullGuard. (2022) Free bullguard mobile security.
https://www.bullguard.com/products/bullguard-free-android-mobile-
security.aspx.

[44] Panda. (2022) Antivirus for android- panda security.
https://www.pandasecurity.com/en/homeusers/android-antivirus/.

[45] Sophos Ltd. (2022) Sophos intercept x for mobile for android.
https://www.sophos.com/en-us/products/free-tools/sophos-mobile-
security-free-edition.aspx.

[46] Avast Software s.r.o. (2022) Avg antivirus for android.
https://www.avg.com/en-us/antivirus-for-android.



[47] Bitdefender. (2022) Bitdefender antivirus free for android.
https://www.bitdefender.com/solutions/antivirus-free-for-android.html.

[48] P. Shrestha, M. Mohamed, and N. Saxena, “Slogger: Smashing motion-
based touchstroke logging with transparent system noise,” in Proceed-
ings of the 9th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, 2016, pp. 67–77.

[49] OnePlus Community, “How often do you believe it’s
acceptable to reboot your phone?” November 2022,
https://community.oneplus.com/thread/1203882664923758594.


