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Abstract
In AR/VR devices, the voice interface, serving as one of the primary
AR/VR control mechanisms, enables users to interact naturally
using speeches (voice commands) for accessing data, controlling
applications, and engaging in remote communication/meetings.
Voice authentication can be adopted to protect against unautho-
rized speech inputs. However, existing voice authentication mech-
anisms are usually susceptible to voice spoofing attacks and are
unreliable under the variations of phonetic content. In this work,
we propose SAFARI, a spoofing-resistant and text-independent
speech authentication system that can be seamlessly integrated
into AR/VR voice interfaces. The key idea is to elicit phonetic-
invariant biometrics from the facial muscle vibrations upon the
headset. During speech production, a user’s facial muscles are de-
formed for articulating phoneme sounds. The facial deformations
associated with the phonemes are referred to as visemes. They carry
rich biometrics of the wearer’s muscles, tissue, and bones, which
can propagate through the head and vibrate the headset. SAFARI
aims to derive reliable facial biometrics from the viseme-associated
facial vibrations captured by the AR/VR motion sensors. Partic-
ularly, it identifies the vibration data segments that contain rich
viseme patterns (prominent visemes) less susceptible to phonetic
variations. Based on the prominent visemes, SAFARI learns on the
correlations among facial vibrations of different frequencies to ex-
tract biometric representations invariant to the phonetic context.
The key advantages of SAFARI are that it is suitable for commodity
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AR/VR headsets (no additional sensors) and is resistant to voice
spoofing attacks as the conductive property of the facial vibrations
prevents biometric disclosure via the air media or the audio chan-
nel. To mitigate the impacts of body motions in AR/VR scenarios,
we also design a generative diffusion model trained to reconstruct
the viseme patterns from the data distorted by motion artifacts.
We conduct extensive experiments with two representative AR/VR
headsets and 35 users under various usage and attack settings. We
demonstrate that SAFARI can achieve over 96% true positive rate
on verifying legitimate users while successfully rejecting different
kinds of spoofing attacks with over 97% true negative rates.
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1 Introduction
With the capability to deliver immersive and interactive experi-
ences, face-mounted AR/VR devices have emerged as prominent 
contenders to personal computers. Leading technology companies 
(e.g., Apple [1], Meta [2]) are at the forefront of promoting spa-
tial computing [47], a paradigm where users can interact with 
digital media/programs displayed in a 3D virtual space through 
gestures and voice. This paradigm shift inevitably migrates a large 
volume of sensitive data and functionalities from computers and
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Figure 1: Illustration of the proposed AR/VR speech authen-
tication system based on facial vibrations of visemes (i.e., the
facial couterparts of phonemes).

mobile devices into AR/VR headsets, such as accounts, photos, fi-
nancial records, and medical information. To protect the security
and privacy of AR/VR users, voice authentication [44, 46, 56, 60] has
emerged as a promising technology. The authentication mechanism
leveraging the voice biometrics can be applied to voice commands
to access the sensitive data or control the AR/VR programs. The user
can also be swiftly authenticated during voice communication (e.g.,
virtual meetings, virtual social interactions) without interrupting
the workflow or communication. Therefore, voice authentication is
considered as both transparent and intuitive for AR/VR users.

However, the adoption of voice authentication in AR/VR plat-
forms faces two key problems. (i) Susceptibility to Voice Spoofing
Attacks: The open nature of sound propagation leaves voice authen-
tication extremely vulnerable to voice spoofing attacks. In AR/VR
settings, where remote voice communications are prevalent, an
adversary can easily obtain the victim’s voice samples through a
shared audio channel (e.g., a VR voice chat, a virtual meeting, a
social interaction session) or the victim’s public speeches. The voice
samples can then be used to reproduce or synthesize speech with
the user’s voice biometrics, bypassing the authentication mecha-
nism [12, 27, 41]. (ii) Variability in Phonetic Patterns: Voice biomet-
rics heavily depend on speech content, specifically the phonemes,
which are the smallest sound units in speech. The biometric rep-
resentations of a phoneme (e.g., formant frequencies and spectral
characteristics) can vary significantly depending on its phonetic
context (i.e., the other phonemes around it), which is called the
co-articulation effect [21]. Therefore, text-independent voice au-
thentication that identifies a user regardless of the speech content
typically requires extensive training voice data [22, 45].

In this work, we introduce SAFARI, the first spoofing-resistant
and text-independent speech authentication system for AR/VR
headsets. Our system can be seamlessly integrated into mainstream
headsets to secure voice inputs, such as those used in voice dictation,
navigations, and app controls. The key idea of SAFARI is to capture
facial geometry deformations during speeches by leveragingminute
facial vibrations upon the headset. We illustrate SAFARI in Figure 1.
During speech production, a user’s face geometry is deformed due
to themovements of facial muscles for articulating phoneme sounds.
Such facial deformations are referred to as visemes, the facial coun-
terparts of phonemes [11]. As the headset is mounted on the user’s
head, these deformations can induce minute vibrations upon the
headset, thereby encoding the viseme patterns into the motion sen-
sor readings. Visemes are consistent across speech content at two
levels [8]: First, visemes have less diversity compared to phonemes,

as multiple phonemes that appear visually similar when spoken are
grouped under a single viseme [8, 11]. For instance, the phonemes
/p/, /b/, and /m/ have the same facial deformations where the mouth
closes at the beginning, followed by a release of air pressure. The
facial deformations of the three phonemes are mapped into one
viseme 𝑉𝑃,𝑀,𝐵 . Second, the same viseme shows highly consistent
facial deformations across different speech content (e.g., viseme
/b/ in “begin”, “browse”, and “battery”). These two properties of
visemes allow SAFARI to profile facial vibrations on only a small
set of visemes (i.e., 11 visemes in English) instead of extensive voice
data covering various speech content [22, 45]. More importantly,
visemes carry rich biometric characteristics of the user’s facial mus-
cles, tissues, and bones, which are confined to the human body.
The internal propagation mechanism of viseme-associated facial
vibrations makes our system resilient to voice spoofing attacks re-
lying on voice biometric theft via the air media or an audio channel.
Even when the facial vibrations can be acquired (e.g., through a
malicious AR/VR app), it is difficult for the adversary to reproduce
the same vibrations on the headset.

Capturing effective viseme patterns poses significant challenges
in AR/VR headsets. Traditional vision-based methods [4, 17] that
rely on cameras to record images/videos of faces are impractical
in AR/VR headsets equipped only with outward-facing cameras.
Therefore, SAFARI utilizes the headset’s built-in motion sensors to
capture facial vibrations, thereby sensing visemes. While motion
sensors are insensitive to airborne sounds [5], they can pick up
conductive facial vibrations induced by visemes. This conductive
property also makes SAFARI resilient to acoustic interferences in
the environment (e.g., ambient noises and speeches of nearby peo-
ple). The design of AR/VR headsets covers only the upper region
of the face (e.g., cheeks, nose bridge, and forehead). The lower fa-
cial areas, particularly near the mouth, lower jaw, and chin, tend
to produce weaker and less consistent vibration patterns, which
compromises viseme sensing via facial vibrations. To overcome this
problem, SAFARI focuses on identifying facial vibration segments
that exhibit pronounced and consistent viseme patterns. We find
that the formation of a vowel viseme coupled with its adjacent
consonant viseme often involves a complete mouth open-and-close
cycle, such as /bI/ in “begin” and /m@U/ in “motion”. We refer to
these viseme combinations as prominent visemes, characterized
by substantial deformations in the upper face region and a richer
array of biometric properties (e.g., muscle movement patterns and
facial structures). Centered on the prominent viseme segments,
we develop a correlation learning scheme that contrasts differ-
ent frequency components within the prominent viseme, deriving
phonetic-invariant facial biometrics for speech authentication.

We face several challenges to realize SAFARI: (1) Significant dis-
tortions caused by body motions: In AR/VR environments, users may
engage in strong and continuous body motions while utilizing SA-
FARI (e.g., playing games, exploring the virtual world). Our system
should recover subtle viseme patterns from significant distortions
to ensure reliable authentication. (2) Difficulty in prominent viseme
segmentation: To enable reliable authentication, SAFARI needs to
identify regions of prominent visemes. However, the smooth and
continuous transitions between visemes make the segmentation
particularly challenging. We must develop algorithms that accu-
rately detect the starting and ending points from the prominent
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visemes. (3) Unknown biometrics related to visemes: The influence of
viseme-related biometrics in facial vibrations has not been studied
in prior work. It is necessary to extract reliable viseme-associated
biometric representations from the vibration patterns.

Tomitigate themotion-induced distortions, we design a diffusion-
based generative model for viseme reconstruction. This model is
trained by iteratively adding the noises of different body motions
in AR/VR settings, and it reconstructs the motion sensor data to the
original state unaffected by body motions. In addition, we design
a two-step scheme to identify and segment temporal regions of
prominent visemes with rich biometrics, each containing a com-
plete mouth open-and-close cycle. The first step involves detecting
vowel sounds by analyzing high-frequency facial vibrations cap-
tured in the motion sensor readings, which occurs predominantly
during speech. This approach effectively distinguishes visemes from
non-speech facial expressions (e.g., smiling, showing anger). In the
second step, SAFARI locates the temporal positions of mouth open-
ing/closing around these vowel sounds based on low-frequency
facial movements. Furthermore, SAFARI utilizes correlation learn-
ing for deriving facial biometrics that are phonetically consistent.
This strategy contrasts low-frequency facial movements with high-
frequency facial vibrations, providing a dual-perspective analy-
sis of each prominent viseme. The correlation will dynamically
weight the stable components within the facial vibrations. Based on
the weighted vibrations, a transformer model is utilized to extract
phonetic-invariant facial biometrics for text-independent authenti-
cation. Our main contributions are summarized as follows:
• We present SAFARI, a spoofing-resistant and text-independent
speech authentication system that can be seamlessly integrated
into mainstream AR/VR devices. It is the first work that shows
distinctive phonetic-invariant and viseme-associated facial bio-
metrics can be extracted using built-in AR/VR motion sensors.

• We design a generative diffusion model, which reconstructs
viseme patterns to a state unaffected by human motions. We
further develop a scheme to identify and segment prominent
visemes with rich viseme patterns for speech authentication.

• We develop a correlation learning strategy with a transformer
architecture to reliably link viseme patterns with users’ unique
facial biometrics. Through contrasting different frequency com-
ponents within the prominent visemes, the strategy extracts
biometric representations that are distinctive for individual users
while being invariant to the phonetic context.

• We validate SAFARI by conducting extensive experiments using
two commercial AR/VR headsets on 35 users with ages ranging
from 18 to 37, including native and non-native English speak-
ers. Through training on 20 short voice commands, SAFARI can
achieve over 96% true positive rates in authenticating enrolled
users. The system can also successfully defend against blind at-
tack, vibration replay attack, and observe-and-mimic attack with
over 97% true negative rates.

2 Preliminaries
2.1 Kinetics of Viseme Production
Visemes are produced during speech articulation. As depicted in
Figure 2, they are shaped by the movements and vibrations of facial
muscles, synchronized with the distinct phoneme sounds in speech.

Vocal folds

Lips

Nasal

Orbicular

Zygomatic

Mandibular

Frontal muscles

Vertical muscles

Head tissues 

and bones

Vocal cords 

and vibrations

Skull

(a) Speech-induced facial muscle vibrations (b) Facial muscle and head structure

Figure 2: Illustration of facial muscle vibrations of visemes
during human speech articulation.

Thus, visemes are the facial counterparts of phonemes. The viseme
patterns are unique to each user, distinguished by facial charac-
teristics such as facial landmarks, cheekbones, and nose structure.
The deformations primarily result from the facial muscle move-
ments. Specifically, five categories of muscles contribute to viseme
production: orbicular, zygomatic, mandibular, frontal, and vertical
muscles [8]. During speech production, the frontal and zygomatic
muscles in the upper face areas influence the headset’s position
and orientation, thus affect the motion sensor readings. The orbic-
ular, mandibular, and vertical muscles in the lower face areas may
indirectly affect the motion sensor readings by altering the tension
and shape of adjacent muscles and tissues. However, the visemes
only involving these muscles, particularly many consonant visemes
(e.g., /f/, /r/, /w/), tend to produce weak and inconsistent facial
vibration patterns. Besides, the facial muscles also carry minute
vibrations originated from vocal organs (e.g., vocal cords and vocal
tract), which serve as an auditory element of visemes. While these
internal muscle vibrations are not visible on the user’s face, they
are closely correlated with the visemes at the user’s face. These
vibrations also carry unique biometric information about the user’s
vocal organs and muscle structures, resulting in distinctive vibra-
tion patterns for different users producing the same viseme.

2.2 Sensing Viseme-associated Facial Vibrations
To study the feasibility of viseme sensing through facial vibrations,
we conduct preliminary experiments using Meta Quest, which is
one of the most popular VR headsets. The headset is equipped with
a three-axis accelerometer and gyroscope. In SAFARI, we mainly
leverage the accelerometer given its better sensitivity to vibra-
tions [57]. The sampling rate is set to 1000Hz. In the experiments,
a participant wearing the Meta Quest is asked to pronounce four
distinct phonemes (visemes): /p/ (𝑉𝑃,𝐵,𝑀 ), /d/ (𝑉𝐷,𝑇 ,𝑆 ), /@U/ (𝑉𝐴),
and /I/ (𝑉𝐼 ). We simultaneously collect data from both the headset’s
accelerometer and microphone. We visualize the time-frequency
spectrograms of the accelerometer and audio data of the phonemes
in Figure 3. Particularly, the temporal regions of viseme articulation
have markedly higher spectrum energy compared to those where
the viseme is absent. Therefore, we utilize the spectrum energy as a
baseline to locate the viseme patterns in the motion sensor readings.
Moreover, we observe that the spectrograms of accelerometer ex-
hibit strong energy at a low-frequency range (i.e., ≤ 100Hz) during
phoneme production. Different from phoneme sounds at higher
frequency, these patterns are associated with visemes, specifically
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Figure 3: Spectrograms of viseme-associated facial vibrations
captured by the accelerometer (Z-axis) and phoneme-related
voice sound recorded by the microphone. The facial vibra-
tions cannot be recorded by the microphone.

the facial muscle movements to articulate the phonemes. These
findings show that the headset’s accelerometer can indeed respond
to individual visemes. Further comparisons between accelerometer
readings and audio spectrograms reveal that these low-frequency
responses to visemes are not captured by the headset’s microphone,
which is designed to pick up air pressure changes rather than con-
ductive movement patterns. In addition to muscle movements, the
accelerometer also detects high-frequency vibrations (i.e., ≥ 100Hz)
transmitted through the muscles. Originated from the vocal cords,
these vibrations undergo complex attenuation, reflection, and re-
fraction within the head, thus containing unique facial muscle
characteristics. It exhibits substantial different frequency responses
compared to those recorded in the microphone. These observations
confirm the feasibility of capturing visemes through facial vibration
sensing on AR/VR headsets. These studies also validate the internal
propagation characteristics of facial vibrations, which prevents the
leakage of viseme biometrics via the audio channel.

3 Threat Model
We consider an adversary who targets private information (e.g., ac-
counts, photos, financial records) or unauthorized operations (e.g.,
making payments, installing malware) on the user’s AR/VR devices.
We assume the adversary is familiar with the authentication mech-
anism of SAFARI and can wear the user’s AR/VR headset. Based
on the prior knowledge and techniques available to the adversary,
we categorize the following three attack types:

BlindAttack. The adversary does not have any prior knowledge
on the viseme patterns of legitimate users. To deploy the attack,
the attackers wear the user’s headset and use voice interactions
with their own visemes, with the expectation that the random facial
expression might bypass the user authentication scheme.

Table 1: 11 different visemes with their corresponding
phoneme sets and representative word examples.

Consonants
Viseme Phoneme Word examples
𝑉𝐽 ,𝐶,𝐻 /Ã/, /Ù/, /S/, /Z/ jump, chat, motion, vision
𝑉𝑃,𝑀,𝐵 /p/, /b/, /m/ pick, bit,make
𝑉𝐹,𝑉 /f/, /v/ fat, value
𝑉𝑅,𝑊 /r/, /w/ run, water
𝑉𝐷,𝑇 ,𝑆 /d/, /t/, /s/, /z/, /T/, /D/ desk, take, sad, zoom, think, that
𝑉𝐺,𝐾,𝑁 /g/, /k/, /n/, /N/, /l/, /y/, /h/ gap, cat, net, ping, lip, yes, has

Vowels
Viseme Phoneme Word examples

𝑉𝐴 /a:/, /aU/, /aI/, /2/ car, out, fly, cup
𝑉𝐸 /e/, /eI/,/æ/, /@/, /e@/, /3:/ egg, save, apple
𝑉𝐼 /i:/, /I@/, /I/ beat, ship
𝑉𝑂 /O:/, /OI/, /@U/, /A/ door, boy, nose
𝑉𝑈 /U/, /U@/, /u:/ book, boot

Vibration Replay Attack. We consider the situations in which
the adversary can obtain the users’ voice samples. This can be
achieved by stealthily recording the user’s sound using a micro-
phone. He/she replays the voice recordings using a playback device
(e.g., a smartphone) in direct contact with the headset. The adver-
sary hopes the conductive vibrations of the playback device can
result in patterns similar to facial vibrations. Although the motion
sensors do not show significant response to air-borne sounds [5],
they can capture the direct vibrations. The adversary can also lever-
age voice synthesis techniques [41, 50] to generate voice samples
with the same speech content and voice biometrics of the legitimate
users for deploying vibration replay attack.

Observe-and-mimic Attack. For this attack, we assume that
the adversary can observe the visemes of legitimate users while they
use SAFARI, which can be realized via observation or video tapping.
The adversary then attempts to imitate the facial deformations
of legitimate users while they pronounce speech. Note that the
adversary can also have a similar face shape with the victim user.

4 System Design
4.1 Enabling Text-independent Speech

Authentication via Viseme Profiling
The idea of SAFARI is to learn phonetic-invariant facial biometrics
associated with visemes. The utilization of visemes is beneficial in
this task on two levels. On the first level, visemes are inherently
less diverse than phonemes due to their many-to-one relationship.
As illustrated in Table 1, facial deformations corresponding to 44
phonemes are typically categorized into 11 distinct visemes, based
on the similarities among the facial landmarks of visemes [28, 30].
This reduced diversity in visemes makes it easier for SAFARI in
profiling the entire range of viseme-related facial biometrics. For
instance, the viseme 𝑉𝐸 includes six phonemes (/e/, /eI/, /æ/, /@/,
/e@/, /3:/), all sharing similar facial deformations and associated
biometrics. On the second level, visemes exhibit strong consistency
in facial deformations across different speech contexts. To demon-
strate this, we analyze the spectrograms of isolated visemes and
compare them with the same visemes within speech contexts, such
as /@U/ (𝑉𝑂 ) in “go” and /t/ (𝑉𝐷,𝑇 ,𝑆 ) in “take”. We ask a volunteer
to pronounce these two viseme-word pairs and show the spectro-
grams in Figure 4. We can observe that visemes maintain their
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Figure 4: Comparisons between visemes and phonemes in
isolated units and different words.

facial vibration patterns even when articulated within the words,
showing their consistency under phonetic variations. In contrast,
the vibration patterns of phonemes like /@U/ and /t/ are significantly
influenced by adjacent phonemes due to co-articulation effects. The
two levels of consistency in viseme-associated facial vibrations ben-
efit SAFARI in realizing text-independent speech authentication.

4.2 Challenges
Significant Distortions Caused by Body Motions. While using
SAFARI, users may interact with AR/VR devices with body gestures
(e.g., looking around, interacting with virtual objects). These arti-
facts generated by bodymotions can significantly distort the viseme
patterns in motion sensor readings. A simple band-pass filter cannot
effectively remove these artifacts given that the responses overlap
with the frequency of facial muscle movements (e.g., 0∼100Hz).
Therefore, it is essential to recover the viseme patterns from such
significant motion artifacts to enable reliable authentication.

Difficulty in Prominent Viseme Segmentation. Prominent
visemes do not exhibit clear and consistent boundaries. The transi-
tions between the consecutive visemes can be smooth, thus posing
challenges for pinpointing their exact starting or ending points.
Developing an accurate prominent viseme segmentation approach
is a critical step for extracting phonetic-invariant components.

Unclear User Biometrics Related to Visemes. The relation-
ships between visemes and speech-induced facial muscle vibrations
are not clear. To realize text-independent authentication with low
enrollment costs, it is essential to extract representative viseme-
associated features that remain consistent across different speech
contents from a limited set of commands. Moreover, these extracted
features should carry distinct and unique biometrics, thus ensuring
clear discrimination between legitimate users and attackers.

4.3 System Overview
To address the aforementioned challenges, we design a suite of
techniques. The overview of SAFARI is illustrated in Figure 5.

Viseme Pattern Reconstruction. To mitigate the effects of mo-
tion artifacts on facial vibrations, we develop a generative diffusion
model, which is designed to restore facial vibrations to their original
state, unimpacted by body motions. The model training comprises
two distinct sub-processes: forward diffusion and reverse diffusion.
In the forward diffusion process, we simulate the motion artifacts
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Figure 5: System overview of SAFARI.

by integrating them with clean facial vibration data. These artifacts
are synthesized based on typical body movements encountered in
AR/VR environments, such as head rotations and arm movements.
Subsequently, the reverse diffusion process focuses on training
the model to accurately reconstruct the clean vibration data. This
involves gradually removing the synthesized motion artifacts to
recover the original, undistorted facial vibration patterns.

Prominent Viseme Segmentation. We develop a two-step
segmentation scheme to detect the temporal regions of prominent
visemes that contain a complete mouth open-and-close cycle. In
the first step, our method identifies vowel sounds by examining
the high-frequency facial muscle vibrations (e.g., ≥ 100Hz), which
is exclusive to vowel sound production. This ensures that the seg-
mented region contains viseme rather than arbitrary facial expres-
sions (e.g., smiling, yawning). In the second step, the scheme deter-
mines the starting and ending positions of the viseme by analyzing
low-frequency facial movements below 100Hz, which effectively
captures the opening and closing gestures of the mouth.

Speech authenticationBased onCorrelation Learning. Lever-
aging prominent viseme segments, SAFARI employs a transformer-
based correlation learning strategy to extract phonetic-invariant
facial biometrics. The learning strategy involves contrasting low-
frequency facial movements with high-frequency muscle vibra-
tions, providing a dual-perspective analysis of each viseme. To
exploit the correlation between two types of facial vibrations, we
have developed a reliability scoring model. This model dynamically
assigns weights to more stable components of the spectrogram,
thereby ensuring that the biometric representations remain consis-
tent across varying speech contents. A transformer-based model
then processes these weighted spectrograms to extract phonetic-
invariant biometric representations. For each enrolled user, SAFARI
constructs a binary classifier that distinguishes the user’s biometric
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Figure 6: Illustration of the forward diffusion and reverse
diffusion process for viseme pattern reconstruction.

signature from others, including specific anchor users. When voice
commands normally contain multiple prominent visemes, SAFARI
aggregates the authentication results from all prominent visemes
using a max-vote strategy. This aggregation further enhances the
robustness of the speech authentication. Additionally, SAFARI can
accommodate multi-user enrollment, such as family settings where
a single headset is shared. This is achieved by creating separate user
profiles, each represented by a unique binary classifier, allowing
individualized authentication for each legitimate user.

5 Viseme Reconstruction via Generative Deep
Learning Model

In practical AR/VR scenarios, users may interact with the head-
sets through various types of body movements (e.g., rotating heads,
manipulating controllers) while issuing voice commands. These mo-
tion artifacts can be mixed with viseme-associated facial vibrations,
distorting the viseme patterns. To ensure reliable viseme biometric
extraction, we design a reconstruction scheme that reverses the
motion sensor data to a state that only contains facial vibrations.

Diffusion-based Viseme Reconstruction. Diffusion-based
generative models have achieved state-of-the-art performance com-
pared to other deep-learning-based generative techniques, such as
Generative Adversarial Network (GAN) and Variational Autoen-
coders (VAE), in text [52], image [24], and audio generation [40]
tasks. Motivated by its effectiveness, we develop a diffusion-based
generative model to reconstruct visemes from body motions. The
viseme reconstruction can be formulated as a parameterized sto-
chastic process with variational noises for training and denoised
viseme samples as outputs. We separate this process into two sub-
processes, forward diffusion and reverse diffusion as illustrated in
Figure 6. Specifically, we model the forward diffusion 𝑞(𝑥𝑅 |𝑥0) as
a Markov chain that gradually adds randomly-generated motion
artifact 𝐸𝑟 to the clean viseme 𝑥0, which can be formulated as:

𝑞 (𝑥𝑅 |𝑥0 ) =
𝑅∏
𝑟=0

𝑞 (𝑥𝑟 |𝑥𝑟−1 ), (1)

where 𝑞(𝑥𝑟 |𝑥𝑟−1) = 𝑥𝑟−1 +𝐸𝑟−1 denotes the diffusion function that
generates the noise viseme 𝑥𝑟 by mixing motion artifact 𝐸𝑟−1 and
noisy viseme 𝑥𝑟−1 generated at step 𝑟 − 1. 𝐸𝑟 = N(𝐸𝑟−1, ℎ, 𝜏, 𝛼𝑟 )
refers using a pre-defined sampling function N to generate the
motion artifact 𝐸𝑟 . ℎ refers to the motion artifact with length 𝐿 that
is randomly selected from a pre-collected motion dataset 𝐻 and
the motion artifact segment 𝐸𝑟 is sampled at the starting time of
𝜏 ∈ [0, 𝐿− 𝑙] from ℎ. Then the clean viseme 𝑥0 can be reconstructed
by gradually removing the body motion artifact 𝐸𝑟 from the noisy

Continuous walking

in AR/VR

(a) Visemes under continuous walking

[əʊ] [laɪ]

(b) Reconstructed visemes

Figure 7: Viseme pattern reconstruction for open ([@U]) and
library ([laI]) under continuous walking with the headset.

viseme 𝑥𝑟 via a reverse procedure, which can be described as:
𝑥𝑟−1 = 𝑥𝑟 − 𝐸𝛽 (𝑥𝑟 , 𝛼𝑟 ), 𝑟 ∈ [0, ..., 𝑅 ], (2)

where 𝐸𝛽 (·, ·) denotes the motion artifact prediction model that
extracts body motion artifact 𝐸𝑟 from the noisy viseme 𝑥𝑟 and its
magnitude ratio 𝛼𝑟 . The model for body motion artifact prediction
can be optimized through minimizing the following object:

argmin
𝛽

𝑁∑︁
𝑖=1

𝑅∑︁
𝑟=1

����𝐸𝛽 (𝑥𝑖,𝑟 , 𝛼𝑟 ) − 𝐸𝑖,𝑟 ����, (3)

where 𝑥𝑖,𝑟 and 𝐸𝑖,𝑟 represent the 𝑖𝑡ℎ noisy viseme sample from
step 𝑟 and its corresponding motion artifact from the training set
𝐷 =

{
(𝑥𝑖,𝑟 , 𝐸𝑖,𝑟 ), 𝑖 = 1...., 𝑁

}
. 𝑁 refers to the total number of sam-

ples in the training set 𝐷 . 𝛽 denotes the trainable parameters of
the motion artifact prediction model and 𝐸𝛽 (·, ·) can be utilized to
expose the body motion artifact in the noisy viseme pattern 𝑥𝑟 after
optimization. The reconstructed viseme can be then obtained by
subtracting the estimated motion artifact 𝐸𝑟 from the noisy viseme
data 𝑥𝑟 . To realize the diffusion-based viseme pattern reconstruc-
tion, we build a model based on the structure of U-Net [39], which
employs a multi-layer perception architecture to embed the features
associated with the noise magnitude and a convolutional layer to
encode the viseme pattern. Then these embedded features are fed
into a structure that contains five down-sampling and up-sampling
layers, and finally outputs the predicted body motion artifacts.

Training Procedure. To build the diffusion model, a set of clean
viseme samples are collected. We also collect the motion sensor
readings associated with a set of common body movements in
AR/VR scenarios, including head rotation, walking around, swing
controller, squatting, and turning around to create the body motion
dataset 𝐻 . 𝐸𝑟 is generated using the random sampling fuction N
on the motion artifact dataset 𝐻 , and the training set 𝐷 is con-
structed by mixing 𝐸𝑖,𝑟 with corresponding clean viseme 𝑥𝑖,0. We
set the length of motion artifact segment 𝑙 to 3 seconds and the
ratio 𝛼𝑟 as 𝛼𝑟 = 0.01 × 𝑟 . The step number 𝑅 of the diffusion and
reverse procedure is fixed as 100. An example viseme spectrogram
reconstructed from continuous walking is illustrated in Figure 7,
where the motion artifacts caused by continuous walking can be
effectively removed, and the viseme patterns are restored.

6 Prominent Viseme Segmentation
SAFARI first locates the prominent visemes that are embedded with
strong and consistent visemes within facial vibrations. In particular,
we define prominent visemes as either the first vowel viseme (𝑉𝑂 in
“open”) or the first viseme combination that involves a consonant
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Figure 8: Illustration of our prominent viseme segmentation
scheme that first detects the regions of vowel sounds (i.e., 𝑡𝑘𝑠
and 𝑡𝑘𝑒 ) and then searches mouth opening and closing (i.e.,
𝑡𝑘𝑠

′ and 𝑡𝑘𝑒
′) of the visemes from “What’s my battery”.

and a vowel, as they contain a complete open-and-close cycle of
human mouth. While pronouncing visemes, users typically bring
their mouth close, then open the mouth, move the lips forward
(especially during speaking the vowel sounds), and finally close
their mouth again [8]. These distinctive cycles of mouth move-
ments make these visemes distinguishable to be separated from
motion sensor readings. To precisely detect and separate promi-
nent visemes, we design a two-step viseme segmentation scheme,
including vowel sound detection and viseme region determination.
Firstly, our scheme detects the pronunciation of vowel sounds by
examining the existence of high-frequency facial muscle vibrations
(e.g., ≥ 100Hz), which are distinguishable from the viseme spectro-
grams. Secondly, based on the identified region of the vowel sounds,
our scheme searches for the starting and ending points of mouth
closing by analyzing low-frequency facial muscle movements (e.g.,
≤ 100Hz). With this approach, we can effectively prevent the in-
correct detection of speech-irrelevant facial expressions in AR/VR
scenarios (e.g., smiling, yawning) as prominent visemes.

Vowel SoundDetection.To detect the vowel sounds, our scheme
first applies element-wise summation on the spectrograms from
the z-axis readings of accelerometer. Based on the summed spectro-
grams, we accumulate the spectrogram energy across frequencies
above 100Hz to measure the energy distribution of facial muscle
vibrations. An example is illustrated in Figure 8(a), which demon-
strates that the energy peak always locates within the vowel sound
region. To precisely detect vowel sounds, a peak selection algorithm
is developed to find the points (e.g., 𝑝𝑘 ) with prominent energy
compared with other adjacent peaks [51]. Our scheme then searches
for a pair of closest points where the mean and variance of energy

show abrupt changes (e.g., 𝑡1𝑠 and 𝑡1𝑒 ) [29] larger than a pre-defined
threshold. Examples of detected peaks and change points of the
vowel sounds [O], [ai], and [æ] are shown in Figure 8(a).

Viseme Region Determination. Given that users open their
mouths to enlarge the vocal tract in preparation for sound produc-
tions (e.g., [@U], [O], [æ]), the low-frequency facial muscle move-
ments are produced prior to the associated facial muscle vibrations.
Moreover, the facial movements will maintain for a duration af-
ter users complete the sound production. Therefore, the regions
of prominent visemes should be larger and completely cover the
detected vowel sounds. To determine the regions of prominent
visemes, we apply moving variance upon motion sensor readings,
where a large moving variance indicates the existence of a signifi-
cant facial movement. An example of using moving variance for
mouth opening and closing detection is shown in Figure 8(b). Simi-
lar with vowel sound detection, we detect the points with abrupt
changes of the spectrogram energy to determine the starting time 𝑡𝑘𝑠
and ending time 𝑡𝑘𝑒 of the viseme corresponding to the 𝑘𝑡ℎ detected
vowel. We then search for the second change point 𝑡𝑘𝑠

′ closest to 𝑡𝑘𝑠
with 𝑡𝑘𝑠

′
< 𝑡𝑘𝑠 and 𝑡𝑘𝑒

′ closest to 𝑡𝑘𝑒 with 𝑡𝑘𝑒
′
> 𝑡𝑘𝑒 . The examples of

detected prominent visemes and associated accelerometer readings
(e.g., z-axis) are elaborated in Figure 8(b) and Figure 8(c).

7 Authentication Framework Based on Viseme
Correlation Learning

7.1 Model Overview
To perform reliable user authentication, we design a correlation
learning framework to derive viseme-associated biometrics. The
idea is to contrast facial movements and vibrations within each
prominent viseme, which highlights the phonetic-invariant compo-
nents (e.g., face shape, bone and muscle properties) shared among
these two types of dynamics. It thus reliably links the viseme pat-
terns with users’ unique biometrics. The framework takes facial
muscle movement spectrogram 𝑥𝑚 and vibration spectrogram 𝑥𝑣
as inputs. The two spectrograms are fed into two scoring mod-
els, 𝐺𝑚 (·) and 𝐺𝑣 (·), which dynamically adjust their weights to
highlight the phonetic-invariant parts of spectrograms. The two
weighted spectrograms, 𝑓𝑚 and 𝑓𝑣 , are then concatenated, which is
referred as 𝑓 = [𝑓𝑚, 𝑓𝑣], and fed into a transformer-based encoder
𝐷 (·) to extract biometric representations. For user authentication,
we build a binary classifer for each legitimate user (e.g.,𝑈 ( 𝑗 ) (·) for
user 𝑗 ), which determines whether the representations belong to
the legitimate user (e.g., user 𝑗 ) or not.

7.2 Reliability Scoring Model for Facial Muscle
Movement and Vibration

To extract the emphasized spectrogram of prominent visemes, we
develop two reliability score models based on Convolutional Neu-
ral Networks (CNNs). In particular, the scoring models take facial
movement spectrogram 𝑥𝑚 ∈ R𝐶×𝑇×𝐹𝑚 and facial vibration spec-
trogram 𝑥𝑣 ∈ R𝐶×𝑇×𝐹𝑣 as inputs and generate two sets of reliability
scores, which are denoted as𝑀𝑚 ∈ R𝐶×𝑇×𝐹𝑚 and𝑀𝑣 ∈ R𝐶×𝑇×𝐹𝑣 .
𝐶 is referred as the input channels associated with the 3-axis motion
sensor readings. 𝑇 and 𝐹𝑚/𝐹𝑣 denote the numbers of points in the
temporal (e.g., ∼0.2𝑠) and frequency dimensions (e.g., ≤ 100Hz and
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Figure 9: Model overview of the viseme correlation learning framework.

≥ 100Hz). High reliability scores highlight the phonetic-consistent
part of prominent visemes that may facilitate user biometric deriva-
tion and differentiation, which can be described as:

𝑓𝑚 = 𝑥𝑚 +𝑀𝑚 ⊙ 𝑥𝑚, 𝑓𝑣 = 𝑥𝑣 +𝑀𝑣 ⊙ 𝑥𝑣, (4)

where 𝑓𝑚 and 𝑓𝑣 denotes the emphasized spectrograms of facial
movements and vibrations, which are then concatenated along the
frequency dimension to generate the combined emphasized viseme
𝑓 = [𝑓𝑚, 𝑓𝑣] ∈ R𝐶×𝑇×𝐹 , with 𝐹 = 𝐹𝑚 + 𝐹𝑣 . Through the reliabil-
ity scoring model, we highlight the phonetic-invariant features
from prominent visemes, which are further utilized to extract facial
representations for effective user authentication.

7.3 Facial Representation Extraction Based on
Spectrogram Transformer

Transformer-based deep learning models, such as Audio Spectro-
gram Transformer (AST) [20], have outperformed traditional mod-
els (e.g., ResNet [23] and LSTM [25]) on speech and speaker recog-
nition. Particularly, the multi-head self-attention mechanism of the
transformer enables itself to focus on different segments of input
sequences, which also facilitates capturing spatial and temporal
features from human visemes. Inspired by the design of AST, we
develop a transformer-based viseme representation extractor to
derive viseme-associated facial biometrics from individual users.
Specifically, the transformer-based representation extractor takes
the emphasized viseme spectrogram 𝑓 as input and splits it into sev-
eral spectrogram patches. Multiple pre-trained convolutional layers
are employed to embed these separated patches for a transformer-
based encoder, which includes 7 heads with self-attention layers to
derive users’ distinctive facial representations.

7.4 Training Procedure for Representation
Extractor and User Authentication Model

Representation Learning. We optimize the trainable parame-
ters of the reliability scoring models 𝐺𝑚 (·) and 𝐺𝑣 (·) and the
transformer-based representation extractor 𝐷 (·) to derive facial
representations. To validate that the extracted embeddings are ef-
fective in differentiating users, we build a user identifier 𝑃 (·) with
two fully-connected layers. During the training phase, we apply
cross-entropy loss to optimize the scoring models𝐺𝑚 (·) and𝐺𝑣 (·),
the representation extractor 𝐷 (·), and the user classifier 𝑃 (·). The

loss function 𝐿𝑅 used for optimization is formulated as:

𝐿𝑅 =
1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔
(
𝑃
(
𝐷
(
[𝐺𝑚 (𝑥𝑖,𝑚 ),𝐺𝑣 (𝑥𝑖,𝑣 ) ]

) ) )
, (5)

where 𝑦𝑖 ∈ [1, ..., 𝑀] denotes the label of facial muscle vibration
spectrogram 𝑥𝑖,𝑚 and facial muscle vibration spectrogram 𝑥𝑖,𝑣 . 𝑁
refers to the total number of viseme samples involved during train-
ing. Note that the user identifier 𝑃 (·) is only involved in the training
process to facilitate the extraction of representative user embed-
dings, and it will not be employed in the user authentication phase.

User Authentication Model. During the training phase of the
user authentication model, we fix the parameters of the reliability
scoring models𝐺𝑚 (·) and𝐺𝑣 (·) and the transformer-based extrac-
tor 𝐷 (·). For each registered user 𝑗 , we build a binary classifier
𝑈 ( 𝑗 ) (·) with two fully-connected layers to determine whether the
input representation 𝑑 is from user 𝑗 or not. The learnable parame-
ters of the classifier 𝑈 ( 𝑗 ) (·) are updated via the loss function 𝐿

( 𝑗 )
𝑈

corresponding to user 𝑗 , which can be described as:

𝐿
( 𝑗 )
𝑈

=
1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔
(
𝑈 ( 𝑗 ) (𝑑𝑖 )

)
, (6)

where 𝑦𝑖 represents the user label of the viseme representation
𝑑𝑖 extracted by the transformer-based extractor 𝐷 (·). To improve
accuracy, we perform authentication based on individual prominent
visemes of speech and fuse their predictions with max-vote. This
aggregation can further improve the robustness of SAFARI.

8 User Authentication Performance
8.1 Experimental Methodologies
AR/VR Headsets. We evaluate the user authentication perfor-
mance of SAFARI on two widely-used standalone AR/VR headsets:
Meta Quest and Meta Quest 2. Both of them are equipped with in-
dependent motion sensor modules for continuous motion tracking.
For Meta Quest, it uses a motion sensor board with the series num-
ber of 330-00193-03, which is originally developed by Meta. Meta
Quest 2 is equipped with a motion sensor board with the series
330-00829-04. Both Meta Quest and Meta Quest 2 operate on an
Android-based system. Under this platform, we utilize Meta Mobile
SDK [36] to develop an application and collect the accelerometer
readings from the headsets. During the experiments, we set the
sampling rates of motion sensors as 1000Hz on both devices.
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Figure 10: Overall authentication performance of SAFARI.

Voice Commands. We select a set of voice commands and col-
lect the visemes from AR/VR accelerometers while users pronounce
these commands. In particular, we choose 30 voice commands that
are commonly used in AR/VR scenarios (e.g., “Open Beat Saber”),
which have encompassed all 11 different visemes. The accelerom-
eter readings of visemes are then divided into several prominent
viseme segments lasting for 1.6 seconds. The average word count
of the commands is 3.1, with the shortest and longest commands
including 1 word and 7 words, respectively. Our selected 30 repre-
sentative voice commands are illustrated in Table 4 in Appendix A.

Participants & Data Collection. We collect the visemes from
a total of 35 participants with ages ranging from 18 to 37, including
native and non-native English speakers. For Meta Quest, we involve
25 participants, with 22 males and 3 females aged from 20 to 33.
For Meta Quest 2, we recruit 10 participants, including 7 males
and 3 females with ages ranging from 17 to 37. Each participant is
asked to wear the headset and pronounce the 30 voice commands
for 10 repeats each. During data collection, we place a sound level
meter 30cm away from the participants’ mouths to measure the
sound pressure levels (SPLs) during command pronunciation. In
the experiments, we constrain the SPLs within 65dB to 75dB and
set no specific restrictions on users’ movements. In total, we collect
95, 570 and 38, 228 viseme samples from the accelerometers of Meta
Quest and Meta Quest 2. The data collection procedures have been
approved by our university’s Institutional Review Boards (IRB).

Evaluation Metrics. We employ the following evaluation met-
rics to evaluate the user authentication performance of SAFARI. (1)
True Positive Rate (TPR): The percentage of legitimate users who
are correctly verified as such. (2) True Negative Rate (TNR): The
percentage of unauthorized users who are correctly verified as such.
(3) Balanced Accuracy (BAC): An evaluation metric that combines
TPR and TNR with an equal weight. It is also important to note
that the Receiver Operating Characteristic (ROC) curve is not uti-
lized to evaluate the performance of SAFARI. The reason is that the
classification boundary is determined by the deep-learning-based
user authentication model in our design.

8.2 Overall User Authentication Performance
Setup: We utilize the viseme dataset collected from Meta Quest to
evaluate the overall user authentication performance of SAFARI.
Specifically, we take turns selecting each of the 25 participants as
legitimate user and the remainings as unauthorized users. During
the training phase, we randomly select 20 different commands
and use the extracted prominent visemes as the training set. The
visemes from the remaining 10 commands are employed as the
testing set. Note that the voice commands of the testing set are

Table 2: The authentication performance of SAFARI with
and without Viseme Pattern Reconstruction (VPR).

Head Rotation Walking Around
Without VPR With VPR Without VPR With VPR

TPR 15.04% 96.44% 20.28% 95.55%
TNR 94.73% 99.87% 96.76% 99.22%
BAC 54.88% 98.15% 58.52% 97.38%

entirely different from the training set to evaluate the performance
of text-independent user authentication. The BAC of each user is
calculated to evaluate the user authentication performance.

Results: The BACs of SAFARI corresponding to different users
are illustrated in Figure 10. The results show that SAFARI achieves
the BAC of more than 91.28% for most participants while only one
individual viseme is utilized for authentication. After employing
max vote across multiple visemes within one command, the BAC
of SAFARI can be further improved, with more than 95.71% for
most participants. High authentication accuracy demonstrates that
SAFARI realizes effectively user authenticate by establishing cor-
relations between visemes and users. The results also validate the
effectiveness of SAFARI’s text-independent authentication given
the entirely different commands in training and testing sets.

8.3 Impacts of Motion Artifact
Setup: To evaluate SAFARI’s performance against motions, we
conduct experiments on Meta Quest by recruiting 10 users and in-
structing them to pronounce the aforementioned commands while
engaging in two pre-defined body motions. (1) Head rotation. The
participants randomly rotate their heads in different directions. (2)
Walking around. The participants randomly walk around within the
boundary of the AR/VR virtual environment. In total, two viseme
datasets corresponding to these two body motions are collected
from the AR/VR accelerometer. To construct the authentication
model, we utilize the extracted prominent visemes from the first 20
commands as the training set and the remaining 10 commands as
the testing set. The average TPR, TNR, and BAC of all 10 participants
are summarized to evaluate the user authentication performance.

Results: The average TPR, TNR, and BAC of SAFARI without
and with motion artifact removal based on viseme reconstruction
are illustrated in Table 2. The results show that the user authentica-
tion performance of SAFARI is compromised by the body motions
in AR/VR scenarios, with TPR, TNR and BAC below 15.04%, 94.73%
and 54.88%, respectively. After utilizing viseme reconstruction for
mitigating motion artifacts, the TPR and TNR under head rota-
tion and walking around is significantly improved, which achieve
more than 96.44% and 99.87%. The BAC of SAFARI is also signif-
icantly enhanced, with more than 98.15% and 97.38% under head
rotation and walking around scenarios. In summary, the substantial
improvements in user authentication performance demonstrate
the effectiveness of our designed motion artifact removal scheme
via viseme reconstruction and SAFARI’s robustness against body
motions in practical AR/VR usage scenarios.

8.4 Impacts of Training Size
Setup: Although increasing the number of commands or repeats
could facilitate authentication accuracy, it brings additional costs
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Figure 11: Impact of the number of training voice commands
and repeats for each command.

for user enrollment. An efficient and effective authentication system
should maintain high accuracy while minimizing the number of
commands required for enrollment. Based on this, we measure the
BAC associated with different numbers of commands or repeats to
explore the authentication performance with different training sizes.
Specifically, we involve 10 participants and collect their visemes
on Meta Quest. During training, we build the authentication model
with 4∼20 different commands or 1∼10 repeats from the voice
command datasets. In the testing phase, the visemes extracted from
the remaining 10 voice commands are employed for evaluation.

Results:We summarize the BAC with varying numbers of voice
commands for training in Figure 11(a). In particular, SAFARI attains
a BAC of more than 96.29% while only 4 different commands are
collected for user enrollment, which demonstrates that SAFARI ac-
curately authenticates users with low data collection and training
costs. The BAC of SAFARI with different repetitions for each com-
mand during model construction is illustrated in Figure 11(b). The
results show that SAFARI achieves a BAC of more than 97.56%while
only one repetition of each voice command is collected from the
user. High authentication accuracy validates that SAFARI success-
fully authenticates users with limited numbers of voice samples for
building user profiles. In summary, the high authentication accuracy
with limited commands or repetitions for training demonstrates
SAFARI’s low costs on model construction and user enrollment.

8.5 Impacts of Headset Models
Setup: To explore SAFARI’s effectiveness on different AR/VR de-
vices, we evaluate its authentication performance on Meta Quest
and Meta Quest 2. Compared with Meta Quest, Meta Quest 2 is
built with lightweight materials and a more advanced motion sen-
sor board (details in Section 8.1). Specifically, we collect two viseme
datasets from the same 10 users on bothMeta Quest andMeta Quest
2. The visemes extracted from 20 different commands and the re-
maining 10 commands are employed for training and testing. We
summarize the average TPR, TNR, and BAC to evaluate SAFARI’s
authentication performance on two different headset models.

Results: The TPR, TNR, and BAC of SAFARI on Meta Quest
and Meta Quest 2 are shown in Figure 12. For Meta Quest, SAFARI
achieves TPR, TNR, and BAC of more than 95.85%, 99.37%, and
97.61% with one individual viseme. After involving max-vote for
authentication, the TPR, TNR, and BAC are improved to 99.78%,
99.98%, and 99.88%. For Meta Quest 2, SAFARI reaches TPR, TNR,
and BAC of more than 86.90%, 96.37%, and 91.64% if only one in-
dividual viseme is used. After applying max-vote, the TPR, TNR,

Q1(IV) Q2(IV)
0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

TPR

TNR

BAC

(a) Performance with individual viseme

Q1(MV) Q2(MV)
0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

TPR

TNR

BAC

(b) Performance with Max-vote

Figure 12: Authentication results ofMeta Quest (Q1) andMeta
Quest 2 (Q2) with Individual Viseme (IV) and Max Vote (MV).

and BAC can achieve more than 94.36%, 99.16%, and 96.76%, respec-
tively. An explanation for Meta Quest’s better performance could
be attributed to its heavier head-mounted display. This characteris-
tic makes the user’s face in closer contact with Meta Quest, thus
facilitating effective viseme capturing. Nevertheless, consistently
high accuracy indicates that SAFARI can accurately authenticate
users while deployed on different devices.

8.6 Impacts of Different Headset Placements on
Human Face

Setup: To explore SAFARI’s robustness against different headset
placements on human faces, we conduct experiments onMeta Quest
with 10 participants. We instruct the participants to wear the head-
set and maintain a consistent position in the virtual environment
while collecting visemes associated with 30 different commands,
which is referred to as Placement 1 (P1). The participants then take
off the headset and wear it after a while to collect another group of
visemes associated with the same 30 commands, which is defined as
Placement 2 (P2). We summarize the average TPR, TNR, and BAC
with (1) visemes of 20 commands in P1 for training and the other
10 commands in P2 for testing, and (2) visemes of 20 commands in
P2 for training and the other 10 commands in P1 for testing.

Results: The TPR, TNR, and BAC of SAFARI under different
headset placements on humans’ faces are illustrated in Figure 13.
In particular, SAFARI achieves TPR, TNR, and BAC of more than
89.94%, 98.66%, and 94.30% with P2 for training and P1 for testing
with one individual viseme for authentication. After involving max-
vote on multiple visemes, the TPR, TNR, and BAC are improved to
97.86%, 99.60%, and 98.73%. With P1 for training and P2 for testing,
SAFARI realizes TPR, TNR, and BAC of more than 89.82%, 99.03%,
and 94.43%with one individual viseme. After applyingmax vote, the
TPR, TNR, and BAC achieve more than 98.08%, 99.98%, and 99.03%.
Consistently high accuracy indicates that SAFARI has realized ef-
fective user authentication under different headset placements on
user faces during practical AR/VR usage.

8.7 Evaluation of Computational Delay
Setup: While realizing user authentication schemes in practical
scenarios, short inference time is crucial for achieving real-time
user authentication and better user experience. To validate that
SAFARI can be deployed to authenticate users in practical AR/VR
scenarios, we evaluate the average computational time of different
modules in SAFARI. In particular, we conduct experiments using
an NVIDIA 4090 GPU and Intel-13900K CPU with a batch size of
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Figure 13: Authentication results of two headset placements
(P1 and P2) using Individual Viseme (IV) and Max Vote (MV).

64 for 1000 visemes to measure the average computational time
of viseme pattern reconstruction, reliability scoring, transformer-
based representation extractor, and user verification.

Results:We summarize the average computational time corre-
sponding to different modules of SAFARI. Compared with other
modules, the reliability scoringmodel has the longest computational
time, with the average of 115𝑚𝑠 . For viseme pattern construction,
transformer-based representation extractor, and user verification,
the average computational time are 56𝑚𝑠 , 14𝑚𝑠 , and 75𝑚𝑠 , which in-
dicates that SAFARI takes approximate 260𝑚𝑠 in average to process
a single viseme input and authenticate user. Short computational
time cost validates that SAFARI can be deployed in practical AR/VR
scenarios for realizing real-time user authentication.

9 Robustness to Spoofing Attack
9.1 Robustness to Blind Attack
Setup: During the blind attack, adversaries attempt to bypass SA-
FARI using their own visemes without any prior knowledge on
the legitimate users’ visemes. To simulate this attack, we collect
visemes associated with 30 different commands from 10 participants
on Meta Quest. Each user takes turns serving as the legitimate user,
and the training and testing set includes the visemes of 20 com-
mands and the remaining 10 commands. We then randomly select
the other 10 participants as adversaries, and collect the visemes of
the remaining 10 commands in the testing set. For evaluation, we
combine the visemes from both legitimate users and adversaries
and then summarize the average TNR, TPR, and BAC.

Results: The authentication performance of SAFARI against
blind attack is illustrated in Figure 14(a). In particular, SAFARI
achieves TPR and TNR of more than 94.04% and 92.94% with one
individual viseme for user authentication. After employing max
vote, SAFARI can realize TPR and TNR of more than 97.95% and
96.33%. For BACs, SAFARI remains high accuracy with more than
93.49% and 97.14% using one individual viseme and max vote for
authentication. The results show that SAFARI successfully resists
blind attack while maintaining effective user authentication, which
can be attributed to the robust extraction of distinctive viseme
representations related to the shape and structure of human faces.

9.2 Robustness to Vibration Replay Attack
Setup: In the vibration replay attack, the adversaries attempt to
bypass SAFARI by replaying commands with a loudspeaker, which
is placed in direct contact with the headset to facilitate vibration
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Figure 14: Authentication performance on defending blind
attack and observe-and-mimic attack.

capturing of the accelerometer. To evaluate SAFARI’s robustness
against vibration replay attack, we utilize an iPhone 13 smartphone,
which is placed 50𝑐𝑚 away from legitimate users to record their
command pronunciation. During the attack, the adversary places
the smartphone in direct contact with the headset and replays the
recorded commands to generate sound vibrations. The experimen-
tal setup is illustrated in Figure 15(a). To build the authentication
model, we collect visemes from 10 participants on Meta Quest, with
each taking turns as the legitimate user. The collected visemes cor-
responding to 20 different commands are served as the training set.
For the testing data, we collect the viseme samples (i.e., legitimate
users) and the audio recordings (i.e., adversaries) of the remaining
10 commands. The average TNR, TPR, and BAC are measured to
evaluate SAFARI’s robustness against vibration replay attack.

Results: The authentication performance of SAFARI under vi-
bration replay attack is summarized in Figure 15(b). While using
one individual viseme for authentication, SAFARI achieves TPR,
TNR, and BAC of more than 89.75%, 97.62%, and 93.68%. After incor-
porating max-vote, the TPR, TNR, and BAC against vibration replay
attack are further improved, with more than 98.35%, 100.00%, and
99.17%. The results demonstrate that SAFARI maintain effective
and robust against vibration replay attack, which can be attributed
to the difference between the air-propagated sound vibrations and
visemes as described in Section 2.

9.3 Robustness to Observe-and-mimic Attack
Setup: During the observe-and-mimic attack, the adversaries aim
to bypass SAFARI by observing the speech articulation and mimick-
ing the facial muscle vibrations of the legitimate users. To simulate
observe-and-mimic attack, the viseme data associated with 20 dif-
ferent commands is first collected from 10 participants using Meta
Quest for training the authentication model. We then randomly
select the other 10 participants as the adversaries and instruct them
to observe the facial deformations of the 10 legitimate users during
voice command pronunciation. During the testing phase, we col-
lect the viseme samples corresponding to the remaining 10 voice
commands from both the adversaries with the mimicked facial
deformations and the legitimate users, and combine them as the
set for testing. The average TPR, TNR, and BAC are measured to
evaluate SAFARI’s robustness against observe-and-mimic attack.

Results: The average TPR, TNR, and BAC against observe-
and-mimic attack are shown in Figure 14(b). Specifically, SAFARI
achieves TPR, TNR, and BAC of more than 94.08%, 97.81%, and
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Figure 15: Experimental setup and authentication perfor-
mance on defending vibration replay attack.

95.95% using only one viseme for user authentication. While apply-
ing max vote for authenticating users, SAFARI achieves TPR, TNR,
and BAC with more than 98.69%, 99.14%, and 98.92%. To ensure
that the adversary accurately mimics the users’ facial movements,
we also conduct experiments on attacks where the adversary can
learn users’ facial movements through a pre-recorded video of users
issuing voice commands. It can be considered the best-case scenario
as the adversary can repeatedly watch the video and practice before
launching the attack. Moreover, we ask a third person to watch
the adversary to confirm the proper mimicry of facial expressions.
Specifically, 3 adversaries are asked to watch the videos of a user
issuing 30 voice commands and try to replicate the user’s facial
expression. Each adversary repeats this process multiple times to
ensure a high degree of mimicry. Even under such actions, the
adversaries are not able to bypass SAFARI with a TNR of more
than 98%. The results demonstrate that SAFARI exhibits strong re-
silience against observe-and-mimic attack and our designed viseme-
associated biometrics are validated to be challenging for attackers
to replicate through observing facial deformations.

10 Related Work
User Authentication on AR/VR. Traditional password-based
authentication methods (e.g., passwords [19], PINs [53], and lock
patterns [38]) originally designed for computers and smartphones
have been adapted for AR/VR platforms. However, these methods
are ill-suited to AR/VR’s novel input interfaces via gestures. Unlike
physical keyboards and touchscreens, AR/VR users are required
to enter credentials using controllers or hand gestures, a process
that can be both time-consuming and inconvenient. While two-
factor authentication systems, such as those involving barcodes or
smartphone messages [32], enhance security, they can disrupt the
immersive AR/VR experience. Recent research has explored behav-
ior biometrics of gestures, including gestures [13, 26, 37, 49, 55].
Other approaches have investigated user authentication via head-
conducted vibrations [31] and sound signals [48]. Thesemethods, re-
quiring additional challenge signals like vibrations or sound chirps
to extract biometrics, which can be intrusive and often impractical
without hardware modifications. Compared with these existing
AR/VR authentication, SAFARI is transparent as it does not re-
quires additional actions or active involvement of users. It is also
compatible with mainstream AR/VR headsets.

Voice Authentication and Liveness Detection. Prior research
has explored voice authentication using acoustic features, such as
Filter Banks [44] andMel-FrequencyCepstral Coefficients (MFCC) [46,

Table 3: SAFARI in comparison with existing authentication
schemes on feature type, text independence, built-in device,
spoofing resilience, and gesture requirement.

Authentication
System

Feature
Extraction

Text-
Indep.

Built-in
Device

Spoofing
Resilience

Gesture
Free

Variani et al. [46] MFCC ✓ ✓ × ✓

Snyder et al. [44] Filter banks ✓ ✓ × ✓

VoiceLive [59] Phoneme × ✓ × ×
CaField [54] Sound field ✓ × ✓ ✓

Blue et al. [10] Vocal tract ✓ × ✓ ✓

VoiceGesture [58] Acoustic
features

× × ✓ ×
WiVo [33] × × ✓ ×
VAuth [18] Speech

vibrations
✓ × ✓ ×

WearID [42] ✓ × ✓ ×
SAFARI (ours) Viseme ✓ ✓ ✓ ✓

56, 60]. While these methods have shown potential, they typically
require extensive training data to develop a robust voiceprint for
each user and are susceptible to spoofing attacks. In contrast, SA-
FARI accomplishes text-independent authentication with only 15
to 20 short voice commands (each under 5 seconds), enhancing
efficiency and user-friendliness. Furthermore, these voice authenti-
cation methods are often vulnerable to spoofing attacks, including
speech synthesis and replay attacks. Differently, SAFARI leverages
facial vibrations that are confined to the human body and offers
resilience against biometric leakage through the audio channel and
subsequent attacks. To counteract voice spoofing, liveness detection
techniques can be integrated with voice authentication to improve
security. These techniques aim to distinguish between live human
speech and machine-generated sounds by exploiting features in-
herent to either the human vocal tract structure [10], the magnetic
field from loudspeakers [14], the time difference-of-arrival (TDoA)
from two microphones [59], sound-field characteristics [54], or vi-
brations induced by the human body or speech [18, 42]. However,
these liveness detection methods often necessitate the integration
of specialized microphones or additional sensors, which introduce
additional overhead for AR/VR users. SAFARI, on the other hand,
leverages the built-in motion sensors readily available in most com-
mercial AR/VR headsets, providing a more seamless and integrated
solution. A comparative comparison of SAFARI with existing voice
authentication and defense systems is presented in Table 3.

Speech Sensing Based on Motion Sensors. Existing studies
have been utilizing MEMS motion sensors for speech sensing on
smartphones [5, 6, 34, 57]. For example, Accelword [57] designs a
benign application to sense speech content using the smartphone’s
accelerometer. AccelEve [7] and Speechless [5]investigate the po-
tential for speech privacy leaks through accelerometers and gyro-
scopes in smartphones. A more recent study, Face-Mic [43], delved
into the possibility of inferring sensitive user information, such as
gender, identity, and speech content, through AR/VR motion sensor
data. Particularly, Face-Mic captures the speech-related facial dy-
namics of headset wear and utilizes a deep learning model for the
privacy attack. However, due to the reliance on speech patterns, the
performance of Face-Mic is still susceptible to variations of speech
content. In contrast, SAFARI takes a different approach by focusing
on the extraction of phonetic-invariant biometrics from facial vi-
brations. It detects and segments prominent visemes from the facial
vibrations to realize text-independent speech authentication.
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11 Limitation
Limited Sample Size. To validate the effectiveness and robust-
ness of SAFARI, we collect viseme samples from a group of 35
participants, including 29 males and 6 females. Based on these sam-
ples, we first explore the feasibility of leveraging viseme-associated
biometrics to realize text-independent and spoofing-resistant user
authentication for AR/VR voice interfaces. While the sample size
of 35 participants could be limited, we believe that SAFARI can be
generalized to authenticate more users. The viseme-associated bio-
metrics capture the user’s face shape, bone properties, and muscle
characteristics, which are distinctive across large populations. To
further demonstrate that SAFARI can realize general authentication
on large groups of users, we plan to involve more participants and
collect a more extensive set of viseme samples in our future work.

Risk of Biometric Information Leakage. Similar to existing
biometrics (e.g., fingerprints, iris, faces), viseme-associated biomet-
rics may contain sensitive information (e.g., the user’s facial proper-
ties and behaviors). A potential solution to protect these biometrics
from leakage while ensuring the authentication performance is to
incorporate on-device machine learning techniques [15, 35] while
constructing the authentication model of SAFARI. By employing
on-device learning approaches, users can create their profiles us-
ing viseme-associated biometrics that are stored locally on AR/VR
devices. SAFARI will also safeguard this local data from potential
leakage, thus ensuring secure authentication. During the model
construction stage of SAFARI, multi-party computation mecha-
nisms [9, 16] can also be utilized to protect viseme-associated bio-
metrics from privacy leakage. In this case, the users’ facial rep-
resentations are jointly generated by multiple cloud servers. The
adversaries cannot derive users’ biometrics by analyzing the data
leakage from only one or several servers.

12 Discussion
Impacts of Environmental Noise and Low Voice Volumes.
Traditional voice applications in AR/VR scenarios usually rely on
built-in microphones to pick up human sound signals. The per-
formance of these applications could be significantly downgraded
under noisy environments or voice inputs with low volumes. Com-
pared with traditional voice applications using microphones for
sound capturing, SAFARI utilizes motion sensors to derive human
visemes. Validated by previous works [5, 6], the motion sensors
can pick up conductive vibrations (e.g., viseme-associated facial
vibrations) and are insensitive to air-conducted sound vibrations.
Therefore, SAFARI is inherently robust to airborne environmental
noises. Additionally, SAFARI leverages speech-induced facial move-
ments to realize user authentication, which does not directly rely
on voice sound. With low-volume voice inputs, SAFARI will also
maintain robust performance in authenticating users.

Robustness to Brute-force Attacks. To bypass SAFARI, ad-
versaries can repeat the utterance until SAFARI fails to reject the
adversaries’ voice input. For instance, considering the SAFARI’s per-
formance in defending the blind attack in Section 9.1, SAFARI may
accept another adversary as the legitimate user in 3 of 100 attempts
given the TNR of 97%. In practical usage scenarios, SAFARI can
also integrate system lockouts following consecutive unsuccessful
attempts to defend against brute force attacks (e.g., repeating an

utterance until a false acceptance occurs). For instance, the possi-
bility of the adversary being continuously rejected by SAFARI for
3 attempts will be more than 91.2% and the system will be locked
if the adversary still cannot bypass SAFARI after 3 attempts. With
this design, SAFARI can successfully defend against brute-force
attacks while maintaining effective user authentication.

Attacks With a Dummy Robot Head. To bypass SAFARI, a
possible attack is to deceive the system by involving a dummy robot
head, which mimics the facial patterns of the victims. Meanwhile,
the adversary should employ a strategy to capture high-quality
video recordings while the victims are speaking, which enables
the robot to replicate corresponding facial deformations. However,
crafting a dummy head with materials that exactly replicate the
composition of facial tissue and head structure remains challeng-
ing. Furthermore, capturing and precisely reconstructing unique
facial deformation poses another challenge for potential adver-
saries. Consequently, such an imaginary attack is demonstrated as
highly intricate, which could be effectively thwarted with SAFARI
by leveraging unique viseme representations of different users.

Attack by Eavesdropping Motion Sensors. Adversaries may
potentially deploy another attack against SAFARI through mali-
cious applications, which eavesdrop and record the facial muscle
vibrations from AR/VR motion sensors for impersonation attacks.
However, such attacks require social engineering skills from ad-
versaries to fool users into installing the malicious applications,
which could inadvertently reveal the malicious intent. Addition-
ally, it is still challenging for adversaries to physically “replay” the
visemes even if the motion sensor readings are available since this
process requires accurate reconstruction of facial deformations and
a well-controlled dummy robot head as we discuss previously.

13 Conclusion
In this paper, we present SAFARI, the first spoofing-resistant and
text-independent speech authentication system for AR/VR headsets.
SAFARI stands out by its ability to extract unique facial biometrics
of users through sensing viseme-associated facial vibrations via the
built-in accelerometer. Particularly, our system adeptly identifies
and segments prominent visemes that contain significant facial
deformations and rich biometric content for speech authentication.
To mitigate the impacts of motion artifacts, we design a generative
diffusion model. This model effectively reconstructs viseme pat-
terns to their original state that are unaffected by body motions.
Furthermore, We design a two-step scheme to segment the tempo-
ral regions containing prominent visemes. Based on the prominent
viseme segments, a transformer-based correlation learning strategy
is designed to contrast the facial muscle movements and vibrations
to elicit phonetic-invariant facial biometrics for speech authenti-
cation. Extensive experiments show that SAFARI can authenticate
users with over 96% true positive rates. Moreover, SAFARI can suc-
cessfully defend against various spoofing attacks, including blind
attacks, vibration replay attacks, and observe-and-mimic attacks.
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A appendix

Table 4: Voice commands involved in viseme collection.

Index Voice command Index Voice command
1 Open Facebook.com. 16 Find some racing games.
2 What’s my battery? 17 Show my favorite videos.
3 Open Beat Saber. 18 Show me events.
4 How do I change my profile picture? 19 Go to Photoshop.
5 Show me my packages. 20 Use with gaze.
6 Send a message. 21 Hide menu.
7 Call my mother. 22 Thank you.
8 Set the volume to full. 23 Hey, Facebook.
9 Turn off Bluetooth. 24 Open library.
10 Teleport. 25 Lower the volume to three.
11 Take a picture. 26 Reset view.
12 Shut down. 27 Reset guardian.
13 Disable airplane mode. 28 Turn on airLink
14 Turn on airplane mode. 29 Restart.
15 What’s the weather next week? 30 Show me my alarms.
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